/* * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Erik Hallnor * Dave Greene * Nathan Binkert * Steve Reinhardt * Ron Dreslinski */ /** * @file * Cache definitions. */ #include "sim/host.hh" #include "base/misc.hh" #include "mem/cache/cache.hh" #include "mem/cache/cache_blk.hh" #include "mem/cache/miss/mshr.hh" #include "mem/cache/prefetch/base_prefetcher.hh" #include "sim/sim_exit.hh" // for SimExitEvent template Cache::Cache(const std::string &_name, Cache::Params ¶ms) : BaseCache(_name, params.baseParams), prefetchAccess(params.prefetchAccess), tags(params.tags), prefetcher(params.prefetcher), doFastWrites(params.doFastWrites), prefetchMiss(params.prefetchMiss) { tempBlock = new BlkType(); tempBlock->data = new uint8_t[blkSize]; cpuSidePort = new CpuSidePort(_name + "-cpu_side_port", this); memSidePort = new MemSidePort(_name + "-mem_side_port", this); cpuSidePort->setOtherPort(memSidePort); memSidePort->setOtherPort(cpuSidePort); tags->setCache(this); prefetcher->setCache(this); } template void Cache::regStats() { BaseCache::regStats(); tags->regStats(name()); prefetcher->regStats(name()); } template Port * Cache::getPort(const std::string &if_name, int idx) { if (if_name == "" || if_name == "cpu_side") { return cpuSidePort; } else if (if_name == "mem_side") { return memSidePort; } else if (if_name == "functional") { return new CpuSidePort(name() + "-cpu_side_funcport", this); } else { panic("Port name %s unrecognized\n", if_name); } } template void Cache::deletePortRefs(Port *p) { if (cpuSidePort == p || memSidePort == p) panic("Can only delete functional ports\n"); delete p; } template void Cache::cmpAndSwap(BlkType *blk, PacketPtr pkt) { uint64_t overwrite_val; bool overwrite_mem; uint64_t condition_val64; uint32_t condition_val32; int offset = tags->extractBlkOffset(pkt->getAddr()); uint8_t *blk_data = blk->data + offset; assert(sizeof(uint64_t) >= pkt->getSize()); overwrite_mem = true; // keep a copy of our possible write value, and copy what is at the // memory address into the packet pkt->writeData((uint8_t *)&overwrite_val); pkt->setData(blk_data); if (pkt->req->isCondSwap()) { if (pkt->getSize() == sizeof(uint64_t)) { condition_val64 = pkt->req->getExtraData(); overwrite_mem = !std::memcmp(&condition_val64, blk_data, sizeof(uint64_t)); } else if (pkt->getSize() == sizeof(uint32_t)) { condition_val32 = (uint32_t)pkt->req->getExtraData(); overwrite_mem = !std::memcmp(&condition_val32, blk_data, sizeof(uint32_t)); } else panic("Invalid size for conditional read/write\n"); } if (overwrite_mem) std::memcpy(blk_data, &overwrite_val, pkt->getSize()); } template void Cache::satisfyCpuSideRequest(PacketPtr pkt, BlkType *blk) { assert(blk); assert(pkt->needsExclusive() ? blk->isWritable() : blk->isValid()); assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); // Check RMW operations first since both isRead() and // isWrite() will be true for them if (pkt->cmd == MemCmd::SwapReq) { cmpAndSwap(blk, pkt); } else if (pkt->isWrite()) { if (blk->checkWrite(pkt)) { blk->status |= BlkDirty; pkt->writeDataToBlock(blk->data, blkSize); } } else if (pkt->isRead()) { if (pkt->isLocked()) { blk->trackLoadLocked(pkt); } pkt->setDataFromBlock(blk->data, blkSize); } else { // Not a read or write... must be an upgrade. it's OK // to just ack those as long as we have an exclusive // copy at this level. assert(pkt->cmd == MemCmd::UpgradeReq); } } ///////////////////////////////////////////////////// // // MSHR helper functions // ///////////////////////////////////////////////////// template void Cache::markInService(MSHR *mshr) { markInServiceInternal(mshr); #if 0 if (mshr->originalCmd == MemCmd::HardPFReq) { DPRINTF(HWPrefetch, "%s:Marking a HW_PF in service\n", name()); //Also clear pending if need be if (!prefetcher->havePending()) { deassertMemSideBusRequest(Request_PF); } } #endif } template void Cache::squash(int threadNum) { bool unblock = false; BlockedCause cause = NUM_BLOCKED_CAUSES; if (noTargetMSHR && noTargetMSHR->threadNum == threadNum) { noTargetMSHR = NULL; unblock = true; cause = Blocked_NoTargets; } if (mshrQueue.isFull()) { unblock = true; cause = Blocked_NoMSHRs; } mshrQueue.squash(threadNum); if (unblock && !mshrQueue.isFull()) { clearBlocked(cause); } } ///////////////////////////////////////////////////// // // Access path: requests coming in from the CPU side // ///////////////////////////////////////////////////// template bool Cache::access(PacketPtr pkt, BlkType *&blk, int &lat) { if (pkt->req->isUncacheable()) { blk = NULL; lat = hitLatency; return false; } bool satisfied = false; // assume the worst blk = tags->findBlock(pkt->getAddr(), lat); if (prefetchAccess) { //We are determining prefetches on access stream, call prefetcher prefetcher->handleMiss(pkt, curTick); } DPRINTF(Cache, "%s %x %s\n", pkt->cmdString(), pkt->getAddr(), (blk) ? "hit" : "miss"); if (blk != NULL) { // HIT if (blk->isPrefetch()) { //Signal that this was a hit under prefetch (no need for //use prefetch (only can get here if true) DPRINTF(HWPrefetch, "Hit a block that was prefetched\n"); blk->status &= ~BlkHWPrefetched; if (prefetchMiss) { //If we are using the miss stream, signal the //prefetcher otherwise the access stream would have //already signaled this hit prefetcher->handleMiss(pkt, curTick); } } if (pkt->needsExclusive() ? blk->isWritable() : blk->isValid()) { // OK to satisfy access hits[pkt->cmdToIndex()][0/*pkt->req->getThreadNum()*/]++; satisfied = true; satisfyCpuSideRequest(pkt, blk); } else { // permission violation... nothing to do here, leave unsatisfied // for statistics purposes this counts like a complete miss incMissCount(pkt); } } else { // complete miss (no matching block) incMissCount(pkt); if (pkt->isLocked() && pkt->isWrite()) { // miss on store conditional... just give up now pkt->req->setExtraData(0); satisfied = true; } } return satisfied; } template bool Cache::timingAccess(PacketPtr pkt) { //@todo Add back in MemDebug Calls // MemDebug::cacheAccess(pkt); // we charge hitLatency for doing just about anything here Tick time = curTick + hitLatency; if (pkt->memInhibitAsserted()) { DPRINTF(Cache, "mem inhibited on 0x%x: not responding\n", pkt->getAddr()); assert(!pkt->req->isUncacheable()); return true; } if (pkt->req->isUncacheable()) { allocateBuffer(pkt, time, true); assert(pkt->needsResponse()); // else we should delete it here?? return true; } int lat = hitLatency; bool satisfied = false; Addr blk_addr = pkt->getAddr() & ~(Addr(blkSize-1)); MSHR *mshr = mshrQueue.findMatch(blk_addr); if (!mshr) { // no outstanding access to this block, look up in cache // (otherwise if we allow reads while there's an outstanding // write miss, the read could return stale data out of the // cache block... a more aggressive system could detect the // overlap (if any) and forward data out of the MSHRs, but we // don't do that yet) BlkType *blk = NULL; satisfied = access(pkt, blk, lat); } #if 0 PacketList writebacks; // If this is a block size write/hint (WH64) allocate the block here // if the coherence protocol allows it. /** @todo make the fast write alloc (wh64) work with coherence. */ /** @todo Do we want to do fast writes for writebacks as well? */ if (!blk && pkt->getSize() >= blkSize && coherence->allowFastWrites() && (pkt->cmd == MemCmd::WriteReq || pkt->cmd == MemCmd::WriteInvalidateReq) ) { // not outstanding misses, can do this MSHR *outstanding_miss = mshrQueue.findMatch(pkt->getAddr()); if (pkt->cmd == MemCmd::WriteInvalidateReq || !outstanding_miss) { if (outstanding_miss) { warn("WriteInv doing a fastallocate" "with an outstanding miss to the same address\n"); } blk = handleFill(NULL, pkt, BlkValid | BlkWritable, writebacks); ++fastWrites; } } // copy writebacks to write buffer while (!writebacks.empty()) { PacketPtr wbPkt = writebacks.front(); allocateBuffer(wbPkt, time, true); writebacks.pop_front(); } #endif bool needsResponse = pkt->needsResponse(); if (satisfied) { assert(needsResponse); pkt->makeTimingResponse(); cpuSidePort->respond(pkt, curTick+lat); } else { // miss if (prefetchMiss) prefetcher->handleMiss(pkt, time); if (mshr) { // MSHR hit //@todo remove hw_pf here mshr_hits[pkt->cmdToIndex()][0/*pkt->req->getThreadNum()*/]++; if (mshr->threadNum != 0/*pkt->req->getThreadNum()*/) { mshr->threadNum = -1; } mshr->allocateTarget(pkt, time, order++); if (mshr->getNumTargets() == numTarget) { noTargetMSHR = mshr; setBlocked(Blocked_NoTargets); // need to be careful with this... if this mshr isn't // ready yet (i.e. time > curTick_, we don't want to // move it ahead of mshrs that are ready // mshrQueue.moveToFront(mshr); } } else { // no MSHR mshr_misses[pkt->cmdToIndex()][0/*pkt->req->getThreadNum()*/]++; // always mark as cache fill for now... if we implement // no-write-allocate or bypass accesses this will have to // be changed. allocateMissBuffer(pkt, time, true); } } if (!needsResponse) { // Need to clean up the packet on a writeback miss, but leave // the request for the next level. delete pkt; } return true; } template PacketPtr Cache::getBusPacket(PacketPtr cpu_pkt, BlkType *blk, bool needsExclusive) { bool blkValid = blk && blk->isValid(); if (cpu_pkt->req->isUncacheable()) { assert(blk == NULL); return NULL; } if (!blkValid && (cpu_pkt->cmd == MemCmd::Writeback || cpu_pkt->cmd == MemCmd::UpgradeReq)) { // For now, writebacks from upper-level caches that // completely miss in the cache just go through. If we had // "fast write" support (where we could write the whole // block w/o fetching new data) we might want to allocate // on writeback misses instead. return NULL; } assert(cpu_pkt->needsResponse()); MemCmd cmd; const bool useUpgrades = true; if (blkValid && useUpgrades) { // only reason to be here is that blk is shared // (read-only) and we need exclusive assert(needsExclusive && !blk->isWritable()); cmd = MemCmd::UpgradeReq; } else { // block is invalid cmd = needsExclusive ? MemCmd::ReadExReq : MemCmd::ReadReq; } PacketPtr pkt = new Packet(cpu_pkt->req, cmd, Packet::Broadcast, blkSize); pkt->allocate(); return pkt; } template Tick Cache::atomicAccess(PacketPtr pkt) { int lat = hitLatency; if (pkt->memInhibitAsserted()) { DPRINTF(Cache, "mem inhibited on 0x%x: not responding\n", pkt->getAddr()); assert(!pkt->req->isUncacheable()); return lat; } // should assert here that there are no outstanding MSHRs or // writebacks... that would mean that someone used an atomic // access in timing mode BlkType *blk = NULL; if (!access(pkt, blk, lat)) { // MISS PacketPtr busPkt = getBusPacket(pkt, blk, pkt->needsExclusive()); bool isCacheFill = (busPkt != NULL); if (busPkt == NULL) { // just forwarding the same request to the next level // no local cache operation involved busPkt = pkt; } DPRINTF(Cache, "Sending an atomic %s for %x\n", busPkt->cmdString(), busPkt->getAddr()); #if TRACING_ON CacheBlk::State old_state = blk ? blk->status : 0; #endif lat += memSidePort->sendAtomic(busPkt); DPRINTF(Cache, "Receive response: %s for addr %x in state %i\n", busPkt->cmdString(), busPkt->getAddr(), old_state); if (isCacheFill) { PacketList writebacks; blk = handleFill(busPkt, blk, writebacks); satisfyCpuSideRequest(pkt, blk); delete busPkt; // Handle writebacks if needed while (!writebacks.empty()){ PacketPtr wbPkt = writebacks.front(); memSidePort->sendAtomic(wbPkt); writebacks.pop_front(); delete wbPkt; } } } // We now have the block one way or another (hit or completed miss) if (pkt->needsResponse()) { pkt->makeAtomicResponse(); } return lat; } template void Cache::functionalAccess(PacketPtr pkt, CachePort *otherSidePort) { Addr blk_addr = pkt->getAddr() & ~(blkSize - 1); BlkType *blk = tags->findBlock(pkt->getAddr()); if (blk && pkt->checkFunctional(blk_addr, blkSize, blk->data)) { // request satisfied from block return; } // Need to check for outstanding misses and writes // There can only be one matching outstanding miss. MSHR *mshr = mshrQueue.findMatch(blk_addr); if (mshr) { MSHR::TargetList *targets = mshr->getTargetList(); MSHR::TargetList::iterator i = targets->begin(); MSHR::TargetList::iterator end = targets->end(); for (; i != end; ++i) { PacketPtr targetPkt = i->pkt; if (pkt->checkFunctional(targetPkt)) return; } } // There can be many matching outstanding writes. std::vector writes; assert(!writeBuffer.findMatches(blk_addr, writes)); /* Need to change this to iterate through targets in mshr?? for (int i = 0; i < writes.size(); ++i) { MSHR *mshr = writes[i]; if (pkt->checkFunctional(mshr->addr, mshr->size, mshr->writeData)) return; } */ otherSidePort->checkAndSendFunctional(pkt); } ///////////////////////////////////////////////////// // // Response handling: responses from the memory side // ///////////////////////////////////////////////////// template bool Cache::satisfyMSHR(MSHR *mshr, PacketPtr pkt, BlkType *blk) { // respond to MSHR targets, if any // First offset for critical word first calculations int initial_offset = 0; if (mshr->hasTargets()) { initial_offset = mshr->getTarget()->pkt->getOffset(blkSize); } while (mshr->hasTargets()) { MSHR::Target *target = mshr->getTarget(); if (target->isCpuSide()) { satisfyCpuSideRequest(target->pkt, blk); // How many bytes pass the first request is this one int transfer_offset = target->pkt->getOffset(blkSize) - initial_offset; if (transfer_offset < 0) { transfer_offset += blkSize; } // If critical word (no offset) return first word time Tick completion_time = tags->getHitLatency() + transfer_offset ? pkt->finishTime : pkt->firstWordTime; if (!target->pkt->req->isUncacheable()) { missLatency[target->pkt->cmdToIndex()][0/*pkt->req->getThreadNum()*/] += completion_time - target->recvTime; } target->pkt->makeTimingResponse(); cpuSidePort->respond(target->pkt, completion_time); } else { // response to snoop request DPRINTF(Cache, "processing deferred snoop...\n"); handleSnoop(target->pkt, blk, true, true); } mshr->popTarget(); } if (mshr->promoteDeferredTargets()) { MSHRQueue *mq = mshr->queue; mq->markPending(mshr); requestMemSideBus((RequestCause)mq->index, pkt->finishTime); return false; } return true; } template void Cache::handleResponse(PacketPtr pkt) { Tick time = curTick + hitLatency; MSHR *mshr = dynamic_cast(pkt->senderState); assert(mshr); if (pkt->wasNacked()) { //pkt->reinitFromRequest(); warn("NACKs from devices not connected to the same bus " "not implemented\n"); return; } assert(!pkt->isError()); DPRINTF(Cache, "Handling response to %x\n", pkt->getAddr()); MSHRQueue *mq = mshr->queue; bool wasFull = mq->isFull(); if (mshr == noTargetMSHR) { // we always clear at least one target clearBlocked(Blocked_NoTargets); noTargetMSHR = NULL; } // Can we deallocate MSHR when done? bool deallocate = false; // Initial target is used just for stats MSHR::Target *initial_tgt = mshr->getTarget(); int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); Tick miss_latency = curTick - initial_tgt->recvTime; if (mshr->isCacheFill) { mshr_miss_latency[stats_cmd_idx][0/*pkt->req->getThreadNum()*/] += miss_latency; DPRINTF(Cache, "Block for addr %x being updated in Cache\n", pkt->getAddr()); BlkType *blk = tags->findBlock(pkt->getAddr()); // give mshr a chance to do some dirty work mshr->handleFill(pkt, blk); PacketList writebacks; blk = handleFill(pkt, blk, writebacks); deallocate = satisfyMSHR(mshr, pkt, blk); // copy writebacks to write buffer while (!writebacks.empty()) { PacketPtr wbPkt = writebacks.front(); allocateBuffer(wbPkt, time, true); writebacks.pop_front(); } // if we used temp block, clear it out if (blk == tempBlock) { if (blk->isDirty()) { allocateBuffer(writebackBlk(blk), time, true); } tags->invalidateBlk(blk); } } else { if (pkt->req->isUncacheable()) { mshr_uncacheable_lat[stats_cmd_idx][0/*pkt->req->getThreadNum()*/] += miss_latency; } while (mshr->hasTargets()) { MSHR::Target *target = mshr->getTarget(); assert(target->isCpuSide()); mshr->popTarget(); if (pkt->isRead()) { target->pkt->setData(pkt->getPtr()); } target->pkt->makeTimingResponse(); cpuSidePort->respond(target->pkt, time); } assert(!mshr->hasTargets()); deallocate = true; } delete pkt; if (deallocate) { mq->deallocate(mshr); if (wasFull && !mq->isFull()) { clearBlocked((BlockedCause)mq->index); } } } template PacketPtr Cache::writebackBlk(BlkType *blk) { assert(blk && blk->isValid() && blk->isDirty()); writebacks[0/*pkt->req->getThreadNum()*/]++; Request *writebackReq = new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0); PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback, -1); writeback->allocate(); std::memcpy(writeback->getPtr(), blk->data, blkSize); blk->status &= ~BlkDirty; return writeback; } // Note that the reason we return a list of writebacks rather than // inserting them directly in the write buffer is that this function // is called by both atomic and timing-mode accesses, and in atomic // mode we don't mess with the write buffer (we just perform the // writebacks atomically once the original request is complete). template typename Cache::BlkType* Cache::handleFill(PacketPtr pkt, BlkType *blk, PacketList &writebacks) { Addr addr = pkt->getAddr(); CacheBlk::State old_state = blk ? blk->status : 0; if (blk == NULL) { // better have read new data... assert(pkt->isRead()); // need to do a replacement blk = tags->findReplacement(addr, writebacks); if (blk->isValid()) { Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set); MSHR *repl_mshr = mshrQueue.findMatch(repl_addr); if (repl_mshr) { // must be an outstanding upgrade request on block // we're about to replace... assert(!blk->isWritable()); assert(repl_mshr->needsExclusive); // too hard to replace block with transient state; // just use temporary storage to complete the current // request and then get rid of it assert(!tempBlock->isValid()); blk = tempBlock; tempBlock->set = tags->extractSet(addr); DPRINTF(Cache, "using temp block for %x\n", addr); } else { DPRINTF(Cache, "replacement: replacing %x with %x: %s\n", repl_addr, addr, blk->isDirty() ? "writeback" : "clean"); if (blk->isDirty()) { // Save writeback packet for handling by caller writebacks.push_back(writebackBlk(blk)); } } } blk->tag = tags->extractTag(addr); } else { // existing block... probably an upgrade assert(blk->tag == tags->extractTag(addr)); // either we're getting new data or the block should already be valid assert(pkt->isRead() || blk->isValid()); } if (pkt->needsExclusive()) { blk->status = BlkValid | BlkWritable | BlkDirty; } else if (!pkt->sharedAsserted()) { blk->status = BlkValid | BlkWritable; } else { blk->status = BlkValid; } DPRINTF(Cache, "Block addr %x moving from state %i to %i\n", addr, old_state, blk->status); // if we got new data, copy it in if (pkt->isRead()) { std::memcpy(blk->data, pkt->getPtr(), blkSize); } blk->whenReady = pkt->finishTime; return blk; } ///////////////////////////////////////////////////// // // Snoop path: requests coming in from the memory side // ///////////////////////////////////////////////////// template void Cache::doTimingSupplyResponse(PacketPtr req_pkt, uint8_t *blk_data, bool already_copied) { // timing-mode snoop responses require a new packet, unless we // already made a copy... PacketPtr pkt = already_copied ? req_pkt : new Packet(req_pkt); pkt->allocate(); pkt->makeTimingResponse(); pkt->setDataFromBlock(blk_data, blkSize); memSidePort->respond(pkt, curTick + hitLatency); } template void Cache::handleSnoop(PacketPtr pkt, BlkType *blk, bool is_timing, bool is_deferred) { if (!blk || !blk->isValid()) { return; } // we may end up modifying both the block state and the packet (if // we respond in atomic mode), so just figure out what to do now // and then do it later bool supply = blk->isDirty() && pkt->isRead(); bool invalidate = pkt->isInvalidate(); if (pkt->isRead() && !pkt->isInvalidate()) { assert(!pkt->needsExclusive()); pkt->assertShared(); int bits_to_clear = BlkWritable; const bool haveOwnershipState = true; // for now if (!haveOwnershipState) { // if we don't support pure ownership (dirty && !writable), // have to clear dirty bit here, assume memory snarfs data // on cache-to-cache xfer bits_to_clear |= BlkDirty; } blk->status &= ~bits_to_clear; } if (supply) { assert(!pkt->memInhibitAsserted()); pkt->assertMemInhibit(); if (is_timing) { doTimingSupplyResponse(pkt, blk->data, is_deferred); } else { pkt->makeAtomicResponse(); pkt->setDataFromBlock(blk->data, blkSize); } } // Do this last in case it deallocates block data or something // like that if (invalidate) { tags->invalidateBlk(blk); } DPRINTF(Cache, "snooped a %s request for addr %x, %snew state is %i\n", pkt->cmdString(), blockAlign(pkt->getAddr()), supply ? "supplying data, " : "", blk->status); } template void Cache::snoopTiming(PacketPtr pkt) { if (pkt->req->isUncacheable()) { //Can't get a hit on an uncacheable address //Revisit this for multi level coherence return; } BlkType *blk = tags->findBlock(pkt->getAddr()); Addr blk_addr = pkt->getAddr() & ~(Addr(blkSize-1)); MSHR *mshr = mshrQueue.findMatch(blk_addr); // better not be snooping a request that conflicts with something // we have outstanding... if (mshr && mshr->inService) { DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %x\n", blk_addr); mshr->allocateSnoopTarget(pkt, curTick, order++); if (mshr->getNumTargets() > numTarget) warn("allocating bonus target for snoop"); //handle later return; } //We also need to check the writeback buffers and handle those std::vector writebacks; if (writeBuffer.findMatches(blk_addr, writebacks)) { DPRINTF(Cache, "Snoop hit in writeback to addr: %x\n", pkt->getAddr()); //Look through writebacks for any non-uncachable writes, use that for (int i=0; iisUncacheable()); assert(mshr->getNumTargets() == 1); PacketPtr wb_pkt = mshr->getTarget()->pkt; assert(wb_pkt->cmd == MemCmd::Writeback); if (pkt->isRead()) { assert(!pkt->memInhibitAsserted()); pkt->assertMemInhibit(); if (!pkt->needsExclusive()) { pkt->assertShared(); } else { // if we're not asserting the shared line, we need to // invalidate our copy. we'll do that below as long as // the packet's invalidate flag is set... assert(pkt->isInvalidate()); } doTimingSupplyResponse(pkt, wb_pkt->getPtr(), false); } if (pkt->isInvalidate()) { // Invalidation trumps our writeback... discard here markInService(mshr); } return; } } handleSnoop(pkt, blk, true, false); } template Tick Cache::snoopAtomic(PacketPtr pkt) { if (pkt->req->isUncacheable()) { // Can't get a hit on an uncacheable address // Revisit this for multi level coherence return hitLatency; } BlkType *blk = tags->findBlock(pkt->getAddr()); handleSnoop(pkt, blk, false, false); return hitLatency; } template MSHR * Cache::getNextMSHR() { // Check both MSHR queue and write buffer for potential requests MSHR *miss_mshr = mshrQueue.getNextMSHR(); MSHR *write_mshr = writeBuffer.getNextMSHR(); // Now figure out which one to send... some cases are easy if (miss_mshr && !write_mshr) { return miss_mshr; } if (write_mshr && !miss_mshr) { return write_mshr; } if (miss_mshr && write_mshr) { // We have one of each... normally we favor the miss request // unless the write buffer is full if (writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) { // Write buffer is full, so we'd like to issue a write; // need to search MSHR queue for conflicting earlier miss. MSHR *conflict_mshr = mshrQueue.findPending(write_mshr->addr, write_mshr->size); if (conflict_mshr && conflict_mshr->order < write_mshr->order) { // Service misses in order until conflict is cleared. return conflict_mshr; } // No conflicts; issue write return write_mshr; } // Write buffer isn't full, but need to check it for // conflicting earlier writeback MSHR *conflict_mshr = writeBuffer.findPending(miss_mshr->addr, miss_mshr->size); if (conflict_mshr) { // not sure why we don't check order here... it was in the // original code but commented out. // The only way this happens is if we are // doing a write and we didn't have permissions // then subsequently saw a writeback (owned got evicted) // We need to make sure to perform the writeback first // To preserve the dirty data, then we can issue the write // should we return write_mshr here instead? I.e. do we // have to flush writes in order? I don't think so... not // for Alpha anyway. Maybe for x86? return conflict_mshr; } // No conflicts; issue read return miss_mshr; } // fall through... no pending requests. Try a prefetch. assert(!miss_mshr && !write_mshr); if (!mshrQueue.isFull()) { // If we have a miss queue slot, we can try a prefetch PacketPtr pkt = prefetcher->getPacket(); if (pkt) { // Update statistic on number of prefetches issued // (hwpf_mshr_misses) mshr_misses[pkt->cmdToIndex()][0/*pkt->req->getThreadNum()*/]++; // Don't request bus, since we already have it return allocateMissBuffer(pkt, curTick, false); } } return NULL; } template PacketPtr Cache::getTimingPacket() { MSHR *mshr = getNextMSHR(); if (mshr == NULL) { return NULL; } // use request from 1st target PacketPtr tgt_pkt = mshr->getTarget()->pkt; PacketPtr pkt = NULL; if (mshr->isSimpleForward()) { // no response expected, just forward packet as it is assert(tags->findBlock(mshr->addr) == NULL); pkt = tgt_pkt; } else { BlkType *blk = tags->findBlock(mshr->addr); pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive); mshr->isCacheFill = (pkt != NULL); if (pkt == NULL) { // not a cache block request, but a response is expected assert(!mshr->isSimpleForward()); // make copy of current packet to forward, keep current // copy for response handling pkt = new Packet(tgt_pkt); pkt->allocate(); if (pkt->isWrite()) { pkt->setData(tgt_pkt->getPtr()); } } } assert(pkt != NULL); pkt->senderState = mshr; return pkt; } /////////////// // // CpuSidePort // /////////////// template void Cache::CpuSidePort:: getDeviceAddressRanges(AddrRangeList &resp, bool &snoop) { // CPU side port doesn't snoop; it's a target only. bool dummy; otherPort->getPeerAddressRanges(resp, dummy); snoop = false; } template bool Cache::CpuSidePort::recvTiming(PacketPtr pkt) { if (pkt->isRequest() && blocked) { DPRINTF(Cache,"Scheduling a retry while blocked\n"); mustSendRetry = true; return false; } myCache()->timingAccess(pkt); return true; } template Tick Cache::CpuSidePort::recvAtomic(PacketPtr pkt) { return myCache()->atomicAccess(pkt); } template void Cache::CpuSidePort::recvFunctional(PacketPtr pkt) { checkFunctional(pkt); if (!pkt->isResponse()) myCache()->functionalAccess(pkt, cache->memSidePort); } template Cache:: CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache) : BaseCache::CachePort(_name, _cache) { } /////////////// // // MemSidePort // /////////////// template void Cache::MemSidePort:: getDeviceAddressRanges(AddrRangeList &resp, bool &snoop) { otherPort->getPeerAddressRanges(resp, snoop); // Memory-side port always snoops, so unconditionally set flag for // caller. snoop = true; } template bool Cache::MemSidePort::recvTiming(PacketPtr pkt) { // this needs to be fixed so that the cache updates the mshr and sends the // packet back out on the link, but it probably won't happen so until this // gets fixed, just panic when it does if (pkt->wasNacked()) panic("Need to implement cache resending nacked packets!\n"); if (pkt->isRequest() && blocked) { DPRINTF(Cache,"Scheduling a retry while blocked\n"); mustSendRetry = true; return false; } if (pkt->isResponse()) { myCache()->handleResponse(pkt); } else { myCache()->snoopTiming(pkt); } return true; } template Tick Cache::MemSidePort::recvAtomic(PacketPtr pkt) { // in atomic mode, responses go back to the sender via the // function return from sendAtomic(), not via a separate // sendAtomic() from the responder. Thus we should never see a // response packet in recvAtomic() (anywhere, not just here). assert(!pkt->isResponse()); return myCache()->snoopAtomic(pkt); } template void Cache::MemSidePort::recvFunctional(PacketPtr pkt) { checkFunctional(pkt); if (!pkt->isResponse()) myCache()->functionalAccess(pkt, cache->cpuSidePort); } template void Cache::MemSidePort::sendPacket() { // if we have responses that are ready, they take precedence if (deferredPacketReady()) { bool success = sendTiming(transmitList.front().pkt); if (success) { //send successful, remove packet transmitList.pop_front(); } waitingOnRetry = !success; } else { // check for non-response packets (requests & writebacks) PacketPtr pkt = myCache()->getTimingPacket(); if (pkt == NULL) { // can happen if e.g. we attempt a writeback and fail, but // before the retry, the writeback is eliminated because // we snoop another cache's ReadEx. waitingOnRetry = false; } else { MSHR *mshr = dynamic_cast(pkt->senderState); bool success = sendTiming(pkt); DPRINTF(Cache, "Address %x was %s in sending the timing request\n", pkt->getAddr(), success ? "successful" : "unsuccessful"); waitingOnRetry = !success; if (waitingOnRetry) { DPRINTF(CachePort, "now waiting on a retry\n"); if (!mshr->isSimpleForward()) { delete pkt; } } else { myCache()->markInService(mshr); } } } // tried to send packet... if it was successful (no retry), see if // we need to rerequest bus or not if (!waitingOnRetry) { Tick nextReady = std::min(deferredPacketReadyTime(), myCache()->nextMSHRReadyTime()); // @TODO: need to facotr in prefetch requests here somehow if (nextReady != MaxTick) { DPRINTF(CachePort, "more packets to send @ %d\n", nextReady); sendEvent->schedule(std::max(nextReady, curTick + 1)); } else { // no more to send right now: if we're draining, we may be done if (drainEvent) { drainEvent->process(); drainEvent = NULL; } } } } template void Cache::MemSidePort::recvRetry() { assert(waitingOnRetry); sendPacket(); } template void Cache::MemSidePort::processSendEvent() { assert(!waitingOnRetry); sendPacket(); } template Cache:: MemSidePort::MemSidePort(const std::string &_name, Cache *_cache) : BaseCache::CachePort(_name, _cache) { // override default send event from SimpleTimingPort delete sendEvent; sendEvent = new SendEvent(this); }