/* * Copyright (c) 2011-2012 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ali Saidi * Andreas Hansson * William Wang */ /** * @file * Definition of a bus object. */ #include "base/misc.hh" #include "base/trace.hh" #include "debug/BusAddrRanges.hh" #include "debug/CoherentBus.hh" #include "mem/coherent_bus.hh" CoherentBus::CoherentBus(const CoherentBusParams *p) : BaseBus(p), reqLayer(*this, ".reqLayer", p->clock), respLayer(*this, ".respLayer", p->clock), snoopRespLayer(*this, ".snoopRespLayer", p->clock) { // create the ports based on the size of the master and slave // vector ports, and the presence of the default port, the ports // are enumerated starting from zero for (int i = 0; i < p->port_master_connection_count; ++i) { std::string portName = csprintf("%s.master[%d]", name(), i); MasterPort* bp = new CoherentBusMasterPort(portName, *this, i); masterPorts.push_back(bp); } // see if we have a default slave device connected and if so add // our corresponding master port if (p->port_default_connection_count) { defaultPortID = masterPorts.size(); std::string portName = name() + ".default"; MasterPort* bp = new CoherentBusMasterPort(portName, *this, defaultPortID); masterPorts.push_back(bp); } // create the slave ports, once again starting at zero for (int i = 0; i < p->port_slave_connection_count; ++i) { std::string portName = csprintf("%s.slave[%d]", name(), i); SlavePort* bp = new CoherentBusSlavePort(portName, *this, i); slavePorts.push_back(bp); } clearPortCache(); } void CoherentBus::init() { // the base class is responsible for determining the block size BaseBus::init(); // iterate over our slave ports and determine which of our // neighbouring master ports are snooping and add them as snoopers for (SlavePortConstIter p = slavePorts.begin(); p != slavePorts.end(); ++p) { // check if the connected master port is snooping if ((*p)->isSnooping()) { DPRINTF(BusAddrRanges, "Adding snooping master %s\n", (*p)->getMasterPort().name()); snoopPorts.push_back(*p); } } if (snoopPorts.empty()) warn("CoherentBus %s has no snooping ports attached!\n", name()); } bool CoherentBus::recvTimingReq(PacketPtr pkt, PortID slave_port_id) { // determine the source port based on the id SlavePort *src_port = slavePorts[slave_port_id]; // remember if the packet is an express snoop bool is_express_snoop = pkt->isExpressSnoop(); // test if the bus should be considered occupied for the current // port, and exclude express snoops from the check if (!is_express_snoop && !reqLayer.tryTiming(src_port)) { DPRINTF(CoherentBus, "recvTimingReq: src %s %s 0x%x BUSY\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); return false; } DPRINTF(CoherentBus, "recvTimingReq: src %s %s expr %d 0x%x\n", src_port->name(), pkt->cmdString(), is_express_snoop, pkt->getAddr()); // set the source port for routing of the response pkt->setSrc(slave_port_id); Tick headerFinishTime = is_express_snoop ? 0 : calcPacketTiming(pkt); Tick packetFinishTime = is_express_snoop ? 0 : pkt->finishTime; // uncacheable requests need never be snooped if (!pkt->req->isUncacheable()) { // the packet is a memory-mapped request and should be // broadcasted to our snoopers but the source forwardTiming(pkt, slave_port_id); } // remember if we add an outstanding req so we can undo it if // necessary, if the packet needs a response, we should add it // as outstanding and express snoops never fail so there is // not need to worry about them bool add_outstanding = !is_express_snoop && pkt->needsResponse(); // keep track that we have an outstanding request packet // matching this request, this is used by the coherency // mechanism in determining what to do with snoop responses // (in recvTimingSnoop) if (add_outstanding) { // we should never have an exsiting request outstanding assert(outstandingReq.find(pkt->req) == outstandingReq.end()); outstandingReq.insert(pkt->req); } // since it is a normal request, determine the destination // based on the address and attempt to send the packet bool success = masterPorts[findPort(pkt->getAddr())]->sendTimingReq(pkt); // if this is an express snoop, we are done at this point if (is_express_snoop) { assert(success); } else { // for normal requests, check if successful if (!success) { // inhibited packets should never be forced to retry assert(!pkt->memInhibitAsserted()); // if it was added as outstanding and the send failed, then // erase it again if (add_outstanding) outstandingReq.erase(pkt->req); DPRINTF(CoherentBus, "recvTimingReq: src %s %s 0x%x RETRY\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); // update the bus state and schedule an idle event reqLayer.failedTiming(src_port, headerFinishTime); } else { // update the bus state and schedule an idle event reqLayer.succeededTiming(packetFinishTime); } } return success; } bool CoherentBus::recvTimingResp(PacketPtr pkt, PortID master_port_id) { // determine the source port based on the id MasterPort *src_port = masterPorts[master_port_id]; // test if the bus should be considered occupied for the current // port if (!respLayer.tryTiming(src_port)) { DPRINTF(CoherentBus, "recvTimingResp: src %s %s 0x%x BUSY\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); return false; } DPRINTF(CoherentBus, "recvTimingResp: src %s %s 0x%x\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); calcPacketTiming(pkt); Tick packetFinishTime = pkt->finishTime; // the packet is a normal response to a request that we should // have seen passing through the bus assert(outstandingReq.find(pkt->req) != outstandingReq.end()); // remove it as outstanding outstandingReq.erase(pkt->req); // send the packet to the destination through one of our slave // ports, as determined by the destination field bool success M5_VAR_USED = slavePorts[pkt->getDest()]->sendTimingResp(pkt); // currently it is illegal to block responses... can lead to // deadlock assert(success); respLayer.succeededTiming(packetFinishTime); return true; } void CoherentBus::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) { DPRINTF(CoherentBus, "recvTimingSnoopReq: src %s %s 0x%x\n", masterPorts[master_port_id]->name(), pkt->cmdString(), pkt->getAddr()); // we should only see express snoops from caches assert(pkt->isExpressSnoop()); // set the source port for routing of the response pkt->setSrc(master_port_id); // forward to all snoopers forwardTiming(pkt, InvalidPortID); // a snoop request came from a connected slave device (one of // our master ports), and if it is not coming from the slave // device responsible for the address range something is // wrong, hence there is nothing further to do as the packet // would be going back to where it came from assert(master_port_id == findPort(pkt->getAddr())); } bool CoherentBus::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) { // determine the source port based on the id SlavePort* src_port = slavePorts[slave_port_id]; // test if the bus should be considered occupied for the current // port if (!snoopRespLayer.tryTiming(src_port)) { DPRINTF(CoherentBus, "recvTimingSnoopResp: src %s %s 0x%x BUSY\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); return false; } DPRINTF(CoherentBus, "recvTimingSnoop: src %s %s 0x%x\n", src_port->name(), pkt->cmdString(), pkt->getAddr()); // get the destination from the packet PortID dest = pkt->getDest(); // responses are never express snoops assert(!pkt->isExpressSnoop()); calcPacketTiming(pkt); Tick packetFinishTime = pkt->finishTime; // determine if the response is from a snoop request we // created as the result of a normal request (in which case it // should be in the outstandingReq), or if we merely forwarded // someone else's snoop request if (outstandingReq.find(pkt->req) == outstandingReq.end()) { // this is a snoop response to a snoop request we // forwarded, e.g. coming from the L1 and going to the L2 // this should be forwarded as a snoop response bool success M5_VAR_USED = masterPorts[dest]->sendTimingSnoopResp(pkt); assert(success); } else { // we got a snoop response on one of our slave ports, // i.e. from a coherent master connected to the bus, and // since we created the snoop request as part of // recvTiming, this should now be a normal response again outstandingReq.erase(pkt->req); // this is a snoop response from a coherent master, with a // destination field set on its way through the bus as // request, hence it should never go back to where the // snoop response came from, but instead to where the // original request came from assert(slave_port_id != dest); // as a normal response, it should go back to a master // through one of our slave ports bool success M5_VAR_USED = slavePorts[dest]->sendTimingResp(pkt); // currently it is illegal to block responses... can lead // to deadlock assert(success); } snoopRespLayer.succeededTiming(packetFinishTime); return true; } void CoherentBus::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id) { for (SlavePortIter s = snoopPorts.begin(); s != snoopPorts.end(); ++s) { SlavePort *p = *s; // we could have gotten this request from a snooping master // (corresponding to our own slave port that is also in // snoopPorts) and should not send it back to where it came // from if (exclude_slave_port_id == InvalidPortID || p->getId() != exclude_slave_port_id) { // cache is not allowed to refuse snoop p->sendTimingSnoopReq(pkt); } } } void CoherentBus::recvRetry() { // responses and snoop responses never block on forwarding them, // so the retry will always be coming from a port to which we // tried to forward a request reqLayer.recvRetry(); } Tick CoherentBus::recvAtomic(PacketPtr pkt, PortID slave_port_id) { DPRINTF(CoherentBus, "recvAtomic: packet src %s addr 0x%x cmd %s\n", slavePorts[slave_port_id]->name(), pkt->getAddr(), pkt->cmdString()); MemCmd snoop_response_cmd = MemCmd::InvalidCmd; Tick snoop_response_latency = 0; // uncacheable requests need never be snooped if (!pkt->req->isUncacheable()) { // forward to all snoopers but the source std::pair snoop_result = forwardAtomic(pkt, slave_port_id); snoop_response_cmd = snoop_result.first; snoop_response_latency = snoop_result.second; } // even if we had a snoop response, we must continue and also // perform the actual request at the destination PortID dest_id = findPort(pkt->getAddr()); // forward the request to the appropriate destination Tick response_latency = masterPorts[dest_id]->sendAtomic(pkt); // if we got a response from a snooper, restore it here if (snoop_response_cmd != MemCmd::InvalidCmd) { // no one else should have responded assert(!pkt->isResponse()); pkt->cmd = snoop_response_cmd; response_latency = snoop_response_latency; } pkt->finishTime = curTick() + response_latency; return response_latency; } Tick CoherentBus::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) { DPRINTF(CoherentBus, "recvAtomicSnoop: packet src %s addr 0x%x cmd %s\n", masterPorts[master_port_id]->name(), pkt->getAddr(), pkt->cmdString()); // forward to all snoopers std::pair snoop_result = forwardAtomic(pkt, InvalidPortID); MemCmd snoop_response_cmd = snoop_result.first; Tick snoop_response_latency = snoop_result.second; if (snoop_response_cmd != MemCmd::InvalidCmd) pkt->cmd = snoop_response_cmd; pkt->finishTime = curTick() + snoop_response_latency; return snoop_response_latency; } std::pair CoherentBus::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id) { // the packet may be changed on snoops, record the original // command to enable us to restore it between snoops so that // additional snoops can take place properly MemCmd orig_cmd = pkt->cmd; MemCmd snoop_response_cmd = MemCmd::InvalidCmd; Tick snoop_response_latency = 0; for (SlavePortIter s = snoopPorts.begin(); s != snoopPorts.end(); ++s) { SlavePort *p = *s; // we could have gotten this request from a snooping master // (corresponding to our own slave port that is also in // snoopPorts) and should not send it back to where it came // from if (exclude_slave_port_id == InvalidPortID || p->getId() != exclude_slave_port_id) { Tick latency = p->sendAtomicSnoop(pkt); // in contrast to a functional access, we have to keep on // going as all snoopers must be updated even if we get a // response if (pkt->isResponse()) { // response from snoop agent assert(pkt->cmd != orig_cmd); assert(pkt->memInhibitAsserted()); // should only happen once assert(snoop_response_cmd == MemCmd::InvalidCmd); // save response state snoop_response_cmd = pkt->cmd; snoop_response_latency = latency; // restore original packet state for remaining snoopers pkt->cmd = orig_cmd; } } } // the packet is restored as part of the loop and any potential // snoop response is part of the returned pair return std::make_pair(snoop_response_cmd, snoop_response_latency); } void CoherentBus::recvFunctional(PacketPtr pkt, PortID slave_port_id) { if (!pkt->isPrint()) { // don't do DPRINTFs on PrintReq as it clutters up the output DPRINTF(CoherentBus, "recvFunctional: packet src %s addr 0x%x cmd %s\n", slavePorts[slave_port_id]->name(), pkt->getAddr(), pkt->cmdString()); } // uncacheable requests need never be snooped if (!pkt->req->isUncacheable()) { // forward to all snoopers but the source forwardFunctional(pkt, slave_port_id); } // there is no need to continue if the snooping has found what we // were looking for and the packet is already a response if (!pkt->isResponse()) { PortID dest_id = findPort(pkt->getAddr()); masterPorts[dest_id]->sendFunctional(pkt); } } void CoherentBus::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) { if (!pkt->isPrint()) { // don't do DPRINTFs on PrintReq as it clutters up the output DPRINTF(CoherentBus, "recvFunctionalSnoop: packet src %s addr 0x%x cmd %s\n", masterPorts[master_port_id]->name(), pkt->getAddr(), pkt->cmdString()); } // forward to all snoopers forwardFunctional(pkt, InvalidPortID); } void CoherentBus::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) { for (SlavePortIter s = snoopPorts.begin(); s != snoopPorts.end(); ++s) { SlavePort *p = *s; // we could have gotten this request from a snooping master // (corresponding to our own slave port that is also in // snoopPorts) and should not send it back to where it came // from if (exclude_slave_port_id == InvalidPortID || p->getId() != exclude_slave_port_id) p->sendFunctionalSnoop(pkt); // if we get a response we are done if (pkt->isResponse()) { break; } } } unsigned int CoherentBus::drain(DrainManager *dm) { // sum up the individual layers return reqLayer.drain(dm) + respLayer.drain(dm) + snoopRespLayer.drain(dm); } CoherentBus * CoherentBusParams::create() { return new CoherentBus(this); }