/* * Copyright (c) 2011-2018 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ali Saidi * Andreas Hansson * William Wang * Nikos Nikoleris */ /** * @file * Definition of a crossbar object. */ #include "mem/coherent_xbar.hh" #include "base/logging.hh" #include "base/trace.hh" #include "debug/AddrRanges.hh" #include "debug/CoherentXBar.hh" #include "sim/system.hh" CoherentXBar::CoherentXBar(const CoherentXBarParams *p) : BaseXBar(p), system(p->system), snoopFilter(p->snoop_filter), snoopResponseLatency(p->snoop_response_latency), pointOfCoherency(p->point_of_coherency), pointOfUnification(p->point_of_unification) { // create the ports based on the size of the master and slave // vector ports, and the presence of the default port, the ports // are enumerated starting from zero for (int i = 0; i < p->port_master_connection_count; ++i) { std::string portName = csprintf("%s.master[%d]", name(), i); MasterPort* bp = new CoherentXBarMasterPort(portName, *this, i); masterPorts.push_back(bp); reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", i))); snoopLayers.push_back(new SnoopRespLayer(*bp, *this, csprintf(".snoopLayer%d", i))); } // see if we have a default slave device connected and if so add // our corresponding master port if (p->port_default_connection_count) { defaultPortID = masterPorts.size(); std::string portName = name() + ".default"; MasterPort* bp = new CoherentXBarMasterPort(portName, *this, defaultPortID); masterPorts.push_back(bp); reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d", defaultPortID))); snoopLayers.push_back(new SnoopRespLayer(*bp, *this, csprintf(".snoopLayer%d", defaultPortID))); } // create the slave ports, once again starting at zero for (int i = 0; i < p->port_slave_connection_count; ++i) { std::string portName = csprintf("%s.slave[%d]", name(), i); QueuedSlavePort* bp = new CoherentXBarSlavePort(portName, *this, i); slavePorts.push_back(bp); respLayers.push_back(new RespLayer(*bp, *this, csprintf(".respLayer%d", i))); snoopRespPorts.push_back(new SnoopRespPort(*bp, *this)); } } CoherentXBar::~CoherentXBar() { for (auto l: reqLayers) delete l; for (auto l: respLayers) delete l; for (auto l: snoopLayers) delete l; for (auto p: snoopRespPorts) delete p; } void CoherentXBar::init() { BaseXBar::init(); // iterate over our slave ports and determine which of our // neighbouring master ports are snooping and add them as snoopers for (const auto& p: slavePorts) { // check if the connected master port is snooping if (p->isSnooping()) { DPRINTF(AddrRanges, "Adding snooping master %s\n", p->getMasterPort().name()); snoopPorts.push_back(p); } } if (snoopPorts.empty()) warn("CoherentXBar %s has no snooping ports attached!\n", name()); // inform the snoop filter about the slave ports so it can create // its own internal representation if (snoopFilter) snoopFilter->setSlavePorts(slavePorts); } bool CoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id) { // determine the source port based on the id SlavePort *src_port = slavePorts[slave_port_id]; // remember if the packet is an express snoop bool is_express_snoop = pkt->isExpressSnoop(); bool cache_responding = pkt->cacheResponding(); // for normal requests, going downstream, the express snoop flag // and the cache responding flag should always be the same assert(is_express_snoop == cache_responding); // determine the destination based on the destination address range AddrRange addr_range = RangeSize(pkt->getAddr(), pkt->getSize()); PortID master_port_id = findPort(addr_range); // test if the crossbar should be considered occupied for the current // port, and exclude express snoops from the check if (!is_express_snoop && !reqLayers[master_port_id]->tryTiming(src_port)) { DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, src_port->name(), pkt->print()); return false; } DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, src_port->name(), pkt->print()); // store size and command as they might be modified when // forwarding the packet unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; unsigned int pkt_cmd = pkt->cmdToIndex(); // store the old header delay so we can restore it if needed Tick old_header_delay = pkt->headerDelay; // a request sees the frontend and forward latency Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod(); // set the packet header and payload delay calcPacketTiming(pkt, xbar_delay); // determine how long to be crossbar layer is busy Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; // is this the destination point for this packet? (e.g. true if // this xbar is the PoC for a cache maintenance operation to the // PoC) otherwise the destination is any cache that can satisfy // the request const bool is_destination = isDestination(pkt); const bool snoop_caches = !system->bypassCaches() && pkt->cmd != MemCmd::WriteClean; if (snoop_caches) { assert(pkt->snoopDelay == 0); if (pkt->isClean() && !is_destination) { // before snooping we need to make sure that the memory // below is not busy and the cache clean request can be // forwarded to it if (!masterPorts[master_port_id]->tryTiming(pkt)) { DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, src_port->name(), pkt->print()); // update the layer state and schedule an idle event reqLayers[master_port_id]->failedTiming(src_port, clockEdge(Cycles(1))); return false; } } // the packet is a memory-mapped request and should be // broadcasted to our snoopers but the source if (snoopFilter) { // check with the snoop filter where to forward this packet auto sf_res = snoopFilter->lookupRequest(pkt, *src_port); // the time required by a packet to be delivered through // the xbar has to be charged also with to lookup latency // of the snoop filter pkt->headerDelay += sf_res.second * clockPeriod(); DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", __func__, src_port->name(), pkt->print(), sf_res.first.size(), sf_res.second); if (pkt->isEviction()) { // for block-evicting packets, i.e. writebacks and // clean evictions, there is no need to snoop up, as // all we do is determine if the block is cached or // not, instead just set it here based on the snoop // filter result if (!sf_res.first.empty()) pkt->setBlockCached(); } else { forwardTiming(pkt, slave_port_id, sf_res.first); } } else { forwardTiming(pkt, slave_port_id); } // add the snoop delay to our header delay, and then reset it pkt->headerDelay += pkt->snoopDelay; pkt->snoopDelay = 0; } // set up a sensible starting point bool success = true; // remember if the packet will generate a snoop response by // checking if a cache set the cacheResponding flag during the // snooping above const bool expect_snoop_resp = !cache_responding && pkt->cacheResponding(); bool expect_response = pkt->needsResponse() && !pkt->cacheResponding(); const bool sink_packet = sinkPacket(pkt); // in certain cases the crossbar is responsible for responding bool respond_directly = false; // store the original address as an address mapper could possibly // modify the address upon a sendTimingRequest const Addr addr(pkt->getAddr()); if (sink_packet) { DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, pkt->print()); } else { // determine if we are forwarding the packet, or responding to // it if (forwardPacket(pkt)) { // if we are passing on, rather than sinking, a packet to // which an upstream cache has committed to responding, // the line was needs writable, and the responding only // had an Owned copy, so we need to immidiately let the // downstream caches know, bypass any flow control if (pkt->cacheResponding()) { pkt->setExpressSnoop(); } // make sure that the write request (e.g., WriteClean) // will stop at the memory below if this crossbar is its // destination if (pkt->isWrite() && is_destination) { pkt->clearWriteThrough(); } // since it is a normal request, attempt to send the packet success = masterPorts[master_port_id]->sendTimingReq(pkt); } else { // no need to forward, turn this packet around and respond // directly assert(pkt->needsResponse()); respond_directly = true; assert(!expect_snoop_resp); expect_response = false; } } if (snoopFilter && snoop_caches) { // Let the snoop filter know about the success of the send operation snoopFilter->finishRequest(!success, addr, pkt->isSecure()); } // check if we were successful in sending the packet onwards if (!success) { // express snoops should never be forced to retry assert(!is_express_snoop); // restore the header delay pkt->headerDelay = old_header_delay; DPRINTF(CoherentXBar, "%s: src %s packet %s RETRY\n", __func__, src_port->name(), pkt->print()); // update the layer state and schedule an idle event reqLayers[master_port_id]->failedTiming(src_port, clockEdge(Cycles(1))); } else { // express snoops currently bypass the crossbar state entirely if (!is_express_snoop) { // if this particular request will generate a snoop // response if (expect_snoop_resp) { // we should never have an exsiting request outstanding assert(outstandingSnoop.find(pkt->req) == outstandingSnoop.end()); outstandingSnoop.insert(pkt->req); // basic sanity check on the outstanding snoops panic_if(outstandingSnoop.size() > 512, "Outstanding snoop requests exceeded 512\n"); } // remember where to route the normal response to if (expect_response || expect_snoop_resp) { assert(routeTo.find(pkt->req) == routeTo.end()); routeTo[pkt->req] = slave_port_id; panic_if(routeTo.size() > 512, "Routing table exceeds 512 packets\n"); } // update the layer state and schedule an idle event reqLayers[master_port_id]->succeededTiming(packetFinishTime); } // stats updates only consider packets that were successfully sent pktCount[slave_port_id][master_port_id]++; pktSize[slave_port_id][master_port_id] += pkt_size; transDist[pkt_cmd]++; if (is_express_snoop) { snoops++; snoopTraffic += pkt_size; } } if (sink_packet) // queue the packet for deletion pendingDelete.reset(pkt); // normally we respond to the packet we just received if we need to PacketPtr rsp_pkt = pkt; PortID rsp_port_id = slave_port_id; // If this is the destination of the cache clean operation the // crossbar is responsible for responding. This crossbar will // respond when the cache clean is complete. A cache clean // is complete either: // * direcly, if no cache above had a dirty copy of the block // as indicated by the satisfied flag of the packet, or // * when the crossbar has seen both the cache clean request // (CleanSharedReq, CleanInvalidReq) and the corresponding // write (WriteClean) which updates the block in the memory // below. if (success && ((pkt->isClean() && pkt->satisfied()) || pkt->cmd == MemCmd::WriteClean) && is_destination) { PacketPtr deferred_rsp = pkt->isWrite() ? nullptr : pkt; auto cmo_lookup = outstandingCMO.find(pkt->id); if (cmo_lookup != outstandingCMO.end()) { // the cache clean request has already reached this xbar respond_directly = true; if (pkt->isWrite()) { rsp_pkt = cmo_lookup->second; assert(rsp_pkt); // determine the destination const auto route_lookup = routeTo.find(rsp_pkt->req); assert(route_lookup != routeTo.end()); rsp_port_id = route_lookup->second; assert(rsp_port_id != InvalidPortID); assert(rsp_port_id < respLayers.size()); // remove the request from the routing table routeTo.erase(route_lookup); } outstandingCMO.erase(cmo_lookup); } else { respond_directly = false; outstandingCMO.emplace(pkt->id, deferred_rsp); if (!pkt->isWrite()) { assert(routeTo.find(pkt->req) == routeTo.end()); routeTo[pkt->req] = slave_port_id; panic_if(routeTo.size() > 512, "Routing table exceeds 512 packets\n"); } } } if (respond_directly) { assert(rsp_pkt->needsResponse()); assert(success); rsp_pkt->makeResponse(); if (snoopFilter && !system->bypassCaches()) { // let the snoop filter inspect the response and update its state snoopFilter->updateResponse(rsp_pkt, *slavePorts[rsp_port_id]); } // we send the response after the current packet, even if the // response is not for this packet (e.g. cache clean operation // where both the request and the write packet have to cross // the destination xbar before the response is sent.) Tick response_time = clockEdge() + pkt->headerDelay; rsp_pkt->headerDelay = 0; slavePorts[rsp_port_id]->schedTimingResp(rsp_pkt, response_time); } return success; } bool CoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id) { // determine the source port based on the id MasterPort *src_port = masterPorts[master_port_id]; // determine the destination const auto route_lookup = routeTo.find(pkt->req); assert(route_lookup != routeTo.end()); const PortID slave_port_id = route_lookup->second; assert(slave_port_id != InvalidPortID); assert(slave_port_id < respLayers.size()); // test if the crossbar should be considered occupied for the // current port if (!respLayers[slave_port_id]->tryTiming(src_port)) { DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, src_port->name(), pkt->print()); return false; } DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, src_port->name(), pkt->print()); // store size and command as they might be modified when // forwarding the packet unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; unsigned int pkt_cmd = pkt->cmdToIndex(); // a response sees the response latency Tick xbar_delay = responseLatency * clockPeriod(); // set the packet header and payload delay calcPacketTiming(pkt, xbar_delay); // determine how long to be crossbar layer is busy Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; if (snoopFilter && !system->bypassCaches()) { // let the snoop filter inspect the response and update its state snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); } // send the packet through the destination slave port and pay for // any outstanding header delay Tick latency = pkt->headerDelay; pkt->headerDelay = 0; slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency); // remove the request from the routing table routeTo.erase(route_lookup); respLayers[slave_port_id]->succeededTiming(packetFinishTime); // stats updates pktCount[slave_port_id][master_port_id]++; pktSize[slave_port_id][master_port_id] += pkt_size; transDist[pkt_cmd]++; return true; } void CoherentXBar::recvTimingSnoopReq(PacketPtr pkt, PortID master_port_id) { DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, masterPorts[master_port_id]->name(), pkt->print()); // update stats here as we know the forwarding will succeed unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; transDist[pkt->cmdToIndex()]++; snoops++; snoopTraffic += pkt_size; // we should only see express snoops from caches assert(pkt->isExpressSnoop()); // set the packet header and payload delay, for now use forward latency // @todo Assess the choice of latency further calcPacketTiming(pkt, forwardLatency * clockPeriod()); // remember if a cache has already committed to responding so we // can see if it changes during the snooping const bool cache_responding = pkt->cacheResponding(); assert(pkt->snoopDelay == 0); if (snoopFilter) { // let the Snoop Filter work its magic and guide probing auto sf_res = snoopFilter->lookupSnoop(pkt); // the time required by a packet to be delivered through // the xbar has to be charged also with to lookup latency // of the snoop filter pkt->headerDelay += sf_res.second * clockPeriod(); DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", __func__, masterPorts[master_port_id]->name(), pkt->print(), sf_res.first.size(), sf_res.second); // forward to all snoopers forwardTiming(pkt, InvalidPortID, sf_res.first); } else { forwardTiming(pkt, InvalidPortID); } // add the snoop delay to our header delay, and then reset it pkt->headerDelay += pkt->snoopDelay; pkt->snoopDelay = 0; // if we can expect a response, remember how to route it if (!cache_responding && pkt->cacheResponding()) { assert(routeTo.find(pkt->req) == routeTo.end()); routeTo[pkt->req] = master_port_id; } // a snoop request came from a connected slave device (one of // our master ports), and if it is not coming from the slave // device responsible for the address range something is // wrong, hence there is nothing further to do as the packet // would be going back to where it came from AddrRange addr_range M5_VAR_USED = RangeSize(pkt->getAddr(), pkt->getSize()); assert(findPort(addr_range) == master_port_id); } bool CoherentXBar::recvTimingSnoopResp(PacketPtr pkt, PortID slave_port_id) { // determine the source port based on the id SlavePort* src_port = slavePorts[slave_port_id]; // get the destination const auto route_lookup = routeTo.find(pkt->req); assert(route_lookup != routeTo.end()); const PortID dest_port_id = route_lookup->second; assert(dest_port_id != InvalidPortID); // determine if the response is from a snoop request we // created as the result of a normal request (in which case it // should be in the outstandingSnoop), or if we merely forwarded // someone else's snoop request const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) == outstandingSnoop.end(); // test if the crossbar should be considered occupied for the // current port, note that the check is bypassed if the response // is being passed on as a normal response since this is occupying // the response layer rather than the snoop response layer if (forwardAsSnoop) { assert(dest_port_id < snoopLayers.size()); if (!snoopLayers[dest_port_id]->tryTiming(src_port)) { DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, src_port->name(), pkt->print()); return false; } } else { // get the master port that mirrors this slave port internally MasterPort* snoop_port = snoopRespPorts[slave_port_id]; assert(dest_port_id < respLayers.size()); if (!respLayers[dest_port_id]->tryTiming(snoop_port)) { DPRINTF(CoherentXBar, "%s: src %s packet %s BUSY\n", __func__, snoop_port->name(), pkt->print()); return false; } } DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, src_port->name(), pkt->print()); // store size and command as they might be modified when // forwarding the packet unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; unsigned int pkt_cmd = pkt->cmdToIndex(); // responses are never express snoops assert(!pkt->isExpressSnoop()); // a snoop response sees the snoop response latency, and if it is // forwarded as a normal response, the response latency Tick xbar_delay = (forwardAsSnoop ? snoopResponseLatency : responseLatency) * clockPeriod(); // set the packet header and payload delay calcPacketTiming(pkt, xbar_delay); // determine how long to be crossbar layer is busy Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay; // forward it either as a snoop response or a normal response if (forwardAsSnoop) { // this is a snoop response to a snoop request we forwarded, // e.g. coming from the L1 and going to the L2, and it should // be forwarded as a snoop response if (snoopFilter) { // update the probe filter so that it can properly track the line snoopFilter->updateSnoopForward(pkt, *slavePorts[slave_port_id], *masterPorts[dest_port_id]); } bool success M5_VAR_USED = masterPorts[dest_port_id]->sendTimingSnoopResp(pkt); pktCount[slave_port_id][dest_port_id]++; pktSize[slave_port_id][dest_port_id] += pkt_size; assert(success); snoopLayers[dest_port_id]->succeededTiming(packetFinishTime); } else { // we got a snoop response on one of our slave ports, // i.e. from a coherent master connected to the crossbar, and // since we created the snoop request as part of recvTiming, // this should now be a normal response again outstandingSnoop.erase(pkt->req); // this is a snoop response from a coherent master, hence it // should never go back to where the snoop response came from, // but instead to where the original request came from assert(slave_port_id != dest_port_id); if (snoopFilter) { // update the probe filter so that it can properly track the line snoopFilter->updateSnoopResponse(pkt, *slavePorts[slave_port_id], *slavePorts[dest_port_id]); } DPRINTF(CoherentXBar, "%s: src %s packet %s FWD RESP\n", __func__, src_port->name(), pkt->print()); // as a normal response, it should go back to a master through // one of our slave ports, we also pay for any outstanding // header latency Tick latency = pkt->headerDelay; pkt->headerDelay = 0; slavePorts[dest_port_id]->schedTimingResp(pkt, curTick() + latency); respLayers[dest_port_id]->succeededTiming(packetFinishTime); } // remove the request from the routing table routeTo.erase(route_lookup); // stats updates transDist[pkt_cmd]++; snoops++; snoopTraffic += pkt_size; return true; } void CoherentXBar::forwardTiming(PacketPtr pkt, PortID exclude_slave_port_id, const std::vector& dests) { DPRINTF(CoherentXBar, "%s for %s\n", __func__, pkt->print()); // snoops should only happen if the system isn't bypassing caches assert(!system->bypassCaches()); unsigned fanout = 0; for (const auto& p: dests) { // we could have gotten this request from a snooping master // (corresponding to our own slave port that is also in // snoopPorts) and should not send it back to where it came // from if (exclude_slave_port_id == InvalidPortID || p->getId() != exclude_slave_port_id) { // cache is not allowed to refuse snoop p->sendTimingSnoopReq(pkt); fanout++; } } // Stats for fanout of this forward operation snoopFanout.sample(fanout); } void CoherentXBar::recvReqRetry(PortID master_port_id) { // responses and snoop responses never block on forwarding them, // so the retry will always be coming from a port to which we // tried to forward a request reqLayers[master_port_id]->recvRetry(); } Tick CoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id) { DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, slavePorts[slave_port_id]->name(), pkt->print()); unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; unsigned int pkt_cmd = pkt->cmdToIndex(); MemCmd snoop_response_cmd = MemCmd::InvalidCmd; Tick snoop_response_latency = 0; // is this the destination point for this packet? (e.g. true if // this xbar is the PoC for a cache maintenance operation to the // PoC) otherwise the destination is any cache that can satisfy // the request const bool is_destination = isDestination(pkt); const bool snoop_caches = !system->bypassCaches() && pkt->cmd != MemCmd::WriteClean; if (snoop_caches) { // forward to all snoopers but the source std::pair snoop_result; if (snoopFilter) { // check with the snoop filter where to forward this packet auto sf_res = snoopFilter->lookupRequest(pkt, *slavePorts[slave_port_id]); snoop_response_latency += sf_res.second * clockPeriod(); DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", __func__, slavePorts[slave_port_id]->name(), pkt->print(), sf_res.first.size(), sf_res.second); // let the snoop filter know about the success of the send // operation, and do it even before sending it onwards to // avoid situations where atomic upward snoops sneak in // between and change the filter state snoopFilter->finishRequest(false, pkt->getAddr(), pkt->isSecure()); if (pkt->isEviction()) { // for block-evicting packets, i.e. writebacks and // clean evictions, there is no need to snoop up, as // all we do is determine if the block is cached or // not, instead just set it here based on the snoop // filter result if (!sf_res.first.empty()) pkt->setBlockCached(); } else { snoop_result = forwardAtomic(pkt, slave_port_id, InvalidPortID, sf_res.first); } } else { snoop_result = forwardAtomic(pkt, slave_port_id); } snoop_response_cmd = snoop_result.first; snoop_response_latency += snoop_result.second; } // set up a sensible default value Tick response_latency = 0; const bool sink_packet = sinkPacket(pkt); // even if we had a snoop response, we must continue and also // perform the actual request at the destination AddrRange addr_range = RangeSize(pkt->getAddr(), pkt->getSize()); PortID master_port_id = findPort(addr_range); if (sink_packet) { DPRINTF(CoherentXBar, "%s: Not forwarding %s\n", __func__, pkt->print()); } else { if (forwardPacket(pkt)) { // make sure that the write request (e.g., WriteClean) // will stop at the memory below if this crossbar is its // destination if (pkt->isWrite() && is_destination) { pkt->clearWriteThrough(); } // forward the request to the appropriate destination response_latency = masterPorts[master_port_id]->sendAtomic(pkt); } else { // if it does not need a response we sink the packet above assert(pkt->needsResponse()); pkt->makeResponse(); } } // stats updates for the request pktCount[slave_port_id][master_port_id]++; pktSize[slave_port_id][master_port_id] += pkt_size; transDist[pkt_cmd]++; // if lower levels have replied, tell the snoop filter if (!system->bypassCaches() && snoopFilter && pkt->isResponse()) { snoopFilter->updateResponse(pkt, *slavePorts[slave_port_id]); } // if we got a response from a snooper, restore it here if (snoop_response_cmd != MemCmd::InvalidCmd) { // no one else should have responded assert(!pkt->isResponse()); pkt->cmd = snoop_response_cmd; response_latency = snoop_response_latency; } // If this is the destination of the cache clean operation the // crossbar is responsible for responding. This crossbar will // respond when the cache clean is complete. An atomic cache clean // is complete when the crossbars receives the cache clean // request (CleanSharedReq, CleanInvalidReq), as either: // * no cache above had a dirty copy of the block as indicated by // the satisfied flag of the packet, or // * the crossbar has already seen the corresponding write // (WriteClean) which updates the block in the memory below. if (pkt->isClean() && isDestination(pkt) && pkt->satisfied()) { auto it = outstandingCMO.find(pkt->id); assert(it != outstandingCMO.end()); // we are responding right away outstandingCMO.erase(it); } else if (pkt->cmd == MemCmd::WriteClean && isDestination(pkt)) { // if this is the destination of the operation, the xbar // sends the responce to the cache clean operation only // after having encountered the cache clean request auto M5_VAR_USED ret = outstandingCMO.emplace(pkt->id, nullptr); // in atomic mode we know that the WriteClean packet should // precede the clean request assert(ret.second); } // add the response data if (pkt->isResponse()) { pkt_size = pkt->hasData() ? pkt->getSize() : 0; pkt_cmd = pkt->cmdToIndex(); // stats updates pktCount[slave_port_id][master_port_id]++; pktSize[slave_port_id][master_port_id] += pkt_size; transDist[pkt_cmd]++; } // @todo: Not setting header time pkt->payloadDelay = response_latency; return response_latency; } Tick CoherentXBar::recvAtomicSnoop(PacketPtr pkt, PortID master_port_id) { DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, masterPorts[master_port_id]->name(), pkt->print()); // add the request snoop data unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0; snoops++; snoopTraffic += pkt_size; // forward to all snoopers std::pair snoop_result; Tick snoop_response_latency = 0; if (snoopFilter) { auto sf_res = snoopFilter->lookupSnoop(pkt); snoop_response_latency += sf_res.second * clockPeriod(); DPRINTF(CoherentXBar, "%s: src %s packet %s SF size: %i lat: %i\n", __func__, masterPorts[master_port_id]->name(), pkt->print(), sf_res.first.size(), sf_res.second); snoop_result = forwardAtomic(pkt, InvalidPortID, master_port_id, sf_res.first); } else { snoop_result = forwardAtomic(pkt, InvalidPortID); } MemCmd snoop_response_cmd = snoop_result.first; snoop_response_latency += snoop_result.second; if (snoop_response_cmd != MemCmd::InvalidCmd) pkt->cmd = snoop_response_cmd; // add the response snoop data if (pkt->isResponse()) { snoops++; } // @todo: Not setting header time pkt->payloadDelay = snoop_response_latency; return snoop_response_latency; } std::pair CoherentXBar::forwardAtomic(PacketPtr pkt, PortID exclude_slave_port_id, PortID source_master_port_id, const std::vector& dests) { // the packet may be changed on snoops, record the original // command to enable us to restore it between snoops so that // additional snoops can take place properly MemCmd orig_cmd = pkt->cmd; MemCmd snoop_response_cmd = MemCmd::InvalidCmd; Tick snoop_response_latency = 0; // snoops should only happen if the system isn't bypassing caches assert(!system->bypassCaches()); unsigned fanout = 0; for (const auto& p: dests) { // we could have gotten this request from a snooping master // (corresponding to our own slave port that is also in // snoopPorts) and should not send it back to where it came // from if (exclude_slave_port_id != InvalidPortID && p->getId() == exclude_slave_port_id) continue; Tick latency = p->sendAtomicSnoop(pkt); fanout++; // in contrast to a functional access, we have to keep on // going as all snoopers must be updated even if we get a // response if (!pkt->isResponse()) continue; // response from snoop agent assert(pkt->cmd != orig_cmd); assert(pkt->cacheResponding()); // should only happen once assert(snoop_response_cmd == MemCmd::InvalidCmd); // save response state snoop_response_cmd = pkt->cmd; snoop_response_latency = latency; if (snoopFilter) { // Handle responses by the snoopers and differentiate between // responses to requests from above and snoops from below if (source_master_port_id != InvalidPortID) { // Getting a response for a snoop from below assert(exclude_slave_port_id == InvalidPortID); snoopFilter->updateSnoopForward(pkt, *p, *masterPorts[source_master_port_id]); } else { // Getting a response for a request from above assert(source_master_port_id == InvalidPortID); snoopFilter->updateSnoopResponse(pkt, *p, *slavePorts[exclude_slave_port_id]); } } // restore original packet state for remaining snoopers pkt->cmd = orig_cmd; } // Stats for fanout snoopFanout.sample(fanout); // the packet is restored as part of the loop and any potential // snoop response is part of the returned pair return std::make_pair(snoop_response_cmd, snoop_response_latency); } void CoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id) { if (!pkt->isPrint()) { // don't do DPRINTFs on PrintReq as it clutters up the output DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, slavePorts[slave_port_id]->name(), pkt->print()); } if (!system->bypassCaches()) { // forward to all snoopers but the source forwardFunctional(pkt, slave_port_id); } // there is no need to continue if the snooping has found what we // were looking for and the packet is already a response if (!pkt->isResponse()) { // since our slave ports are queued ports we need to check them as well for (const auto& p : slavePorts) { // if we find a response that has the data, then the // downstream caches/memories may be out of date, so simply stop // here if (p->trySatisfyFunctional(pkt)) { if (pkt->needsResponse()) pkt->makeResponse(); return; } } PortID dest_id = findPort(RangeSize(pkt->getAddr(), pkt->getSize())); masterPorts[dest_id]->sendFunctional(pkt); } } void CoherentXBar::recvFunctionalSnoop(PacketPtr pkt, PortID master_port_id) { if (!pkt->isPrint()) { // don't do DPRINTFs on PrintReq as it clutters up the output DPRINTF(CoherentXBar, "%s: src %s packet %s\n", __func__, masterPorts[master_port_id]->name(), pkt->print()); } for (const auto& p : slavePorts) { if (p->trySatisfyFunctional(pkt)) { if (pkt->needsResponse()) pkt->makeResponse(); return; } } // forward to all snoopers forwardFunctional(pkt, InvalidPortID); } void CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id) { // snoops should only happen if the system isn't bypassing caches assert(!system->bypassCaches()); for (const auto& p: snoopPorts) { // we could have gotten this request from a snooping master // (corresponding to our own slave port that is also in // snoopPorts) and should not send it back to where it came // from if (exclude_slave_port_id == InvalidPortID || p->getId() != exclude_slave_port_id) p->sendFunctionalSnoop(pkt); // if we get a response we are done if (pkt->isResponse()) { break; } } } bool CoherentXBar::sinkPacket(const PacketPtr pkt) const { // we can sink the packet if: // 1) the crossbar is the point of coherency, and a cache is // responding after being snooped // 2) the crossbar is the point of coherency, and the packet is a // coherency packet (not a read or a write) that does not // require a response // 3) this is a clean evict or clean writeback, but the packet is // found in a cache above this crossbar // 4) a cache is responding after being snooped, and the packet // either does not need the block to be writable, or the cache // that has promised to respond (setting the cache responding // flag) is providing writable and thus had a Modified block, // and no further action is needed return (pointOfCoherency && pkt->cacheResponding()) || (pointOfCoherency && !(pkt->isRead() || pkt->isWrite()) && !pkt->needsResponse()) || (pkt->isCleanEviction() && pkt->isBlockCached()) || (pkt->cacheResponding() && (!pkt->needsWritable() || pkt->responderHadWritable())); } bool CoherentXBar::forwardPacket(const PacketPtr pkt) { // we are forwarding the packet if: // 1) this is a cache clean request to the PoU/PoC and this // crossbar is above the PoU/PoC // 2) this is a read or a write // 3) this crossbar is above the point of coherency if (pkt->isClean()) { return !isDestination(pkt); } return pkt->isRead() || pkt->isWrite() || !pointOfCoherency; } void CoherentXBar::regStats() { // register the stats of the base class and our layers BaseXBar::regStats(); for (auto l: reqLayers) l->regStats(); for (auto l: respLayers) l->regStats(); for (auto l: snoopLayers) l->regStats(); snoops .name(name() + ".snoops") .desc("Total snoops (count)") ; snoopTraffic .name(name() + ".snoopTraffic") .desc("Total snoop traffic (bytes)") ; snoopFanout .init(0, snoopPorts.size(), 1) .name(name() + ".snoop_fanout") .desc("Request fanout histogram") ; } CoherentXBar * CoherentXBarParams::create() { return new CoherentXBar(this); }