/* * Copyright (c) 2013 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Andreas Hansson */ #include "mem/dramsim2.hh" #include "DRAMSim2/Callback.h" #include "base/callback.hh" #include "base/trace.hh" #include "debug/DRAMSim2.hh" #include "debug/Drain.hh" #include "sim/system.hh" DRAMSim2::DRAMSim2(const Params* p) : AbstractMemory(p), port(name() + ".port", *this), wrapper(p->deviceConfigFile, p->systemConfigFile, p->filePath, p->traceFile, p->range.size() / 1024 / 1024, p->enableDebug), retryReq(false), retryResp(false), startTick(0), nbrOutstandingReads(0), nbrOutstandingWrites(0), sendResponseEvent([this]{ sendResponse(); }, name()), tickEvent([this]{ tick(); }, name()) { DPRINTF(DRAMSim2, "Instantiated DRAMSim2 with clock %d ns and queue size %d\n", wrapper.clockPeriod(), wrapper.queueSize()); DRAMSim::TransactionCompleteCB* read_cb = new DRAMSim::Callback( this, &DRAMSim2::readComplete); DRAMSim::TransactionCompleteCB* write_cb = new DRAMSim::Callback( this, &DRAMSim2::writeComplete); wrapper.setCallbacks(read_cb, write_cb); // Register a callback to compensate for the destructor not // being called. The callback prints the DRAMSim2 stats. Callback* cb = new MakeCallback(wrapper); registerExitCallback(cb); } void DRAMSim2::init() { AbstractMemory::init(); if (!port.isConnected()) { fatal("DRAMSim2 %s is unconnected!\n", name()); } else { port.sendRangeChange(); } if (system()->cacheLineSize() != wrapper.burstSize()) fatal("DRAMSim2 burst size %d does not match cache line size %d\n", wrapper.burstSize(), system()->cacheLineSize()); } void DRAMSim2::startup() { startTick = curTick(); // kick off the clock ticks schedule(tickEvent, clockEdge()); } void DRAMSim2::sendResponse() { assert(!retryResp); assert(!responseQueue.empty()); DPRINTF(DRAMSim2, "Attempting to send response\n"); bool success = port.sendTimingResp(responseQueue.front()); if (success) { responseQueue.pop_front(); DPRINTF(DRAMSim2, "Have %d read, %d write, %d responses outstanding\n", nbrOutstandingReads, nbrOutstandingWrites, responseQueue.size()); if (!responseQueue.empty() && !sendResponseEvent.scheduled()) schedule(sendResponseEvent, curTick()); if (nbrOutstanding() == 0) signalDrainDone(); } else { retryResp = true; DPRINTF(DRAMSim2, "Waiting for response retry\n"); assert(!sendResponseEvent.scheduled()); } } unsigned int DRAMSim2::nbrOutstanding() const { return nbrOutstandingReads + nbrOutstandingWrites + responseQueue.size(); } void DRAMSim2::tick() { wrapper.tick(); // is the connected port waiting for a retry, if so check the // state and send a retry if conditions have changed if (retryReq && nbrOutstanding() < wrapper.queueSize()) { retryReq = false; port.sendRetryReq(); } schedule(tickEvent, curTick() + wrapper.clockPeriod() * SimClock::Int::ns); } Tick DRAMSim2::recvAtomic(PacketPtr pkt) { access(pkt); // 50 ns is just an arbitrary value at this point return pkt->cacheResponding() ? 0 : 50000; } void DRAMSim2::recvFunctional(PacketPtr pkt) { pkt->pushLabel(name()); functionalAccess(pkt); // potentially update the packets in our response queue as well for (auto i = responseQueue.begin(); i != responseQueue.end(); ++i) pkt->trySatisfyFunctional(*i); pkt->popLabel(); } bool DRAMSim2::recvTimingReq(PacketPtr pkt) { // if a cache is responding, sink the packet without further action if (pkt->cacheResponding()) { pendingDelete.reset(pkt); return true; } // we should not get a new request after committing to retry the // current one, but unfortunately the CPU violates this rule, so // simply ignore it for now if (retryReq) return false; // if we cannot accept we need to send a retry once progress can // be made bool can_accept = nbrOutstanding() < wrapper.queueSize(); // keep track of the transaction if (pkt->isRead()) { if (can_accept) { outstandingReads[pkt->getAddr()].push(pkt); // we count a transaction as outstanding until it has left the // queue in the controller, and the response has been sent // back, note that this will differ for reads and writes ++nbrOutstandingReads; } } else if (pkt->isWrite()) { if (can_accept) { outstandingWrites[pkt->getAddr()].push(pkt); ++nbrOutstandingWrites; // perform the access for writes accessAndRespond(pkt); } } else { // keep it simple and just respond if necessary accessAndRespond(pkt); return true; } if (can_accept) { // we should never have a situation when we think there is space, // and there isn't assert(wrapper.canAccept()); DPRINTF(DRAMSim2, "Enqueueing address %lld\n", pkt->getAddr()); // @todo what about the granularity here, implicit assumption that // a transaction matches the burst size of the memory (which we // cannot determine without parsing the ini file ourselves) wrapper.enqueue(pkt->isWrite(), pkt->getAddr()); return true; } else { retryReq = true; return false; } } void DRAMSim2::recvRespRetry() { DPRINTF(DRAMSim2, "Retrying\n"); assert(retryResp); retryResp = false; sendResponse(); } void DRAMSim2::accessAndRespond(PacketPtr pkt) { DPRINTF(DRAMSim2, "Access for address %lld\n", pkt->getAddr()); bool needsResponse = pkt->needsResponse(); // do the actual memory access which also turns the packet into a // response access(pkt); // turn packet around to go back to requester if response expected if (needsResponse) { // access already turned the packet into a response assert(pkt->isResponse()); // Here we pay for xbar additional delay and to process the payload // of the packet. Tick time = curTick() + pkt->headerDelay + pkt->payloadDelay; // Reset the timings of the packet pkt->headerDelay = pkt->payloadDelay = 0; DPRINTF(DRAMSim2, "Queuing response for address %lld\n", pkt->getAddr()); // queue it to be sent back responseQueue.push_back(pkt); // if we are not already waiting for a retry, or are scheduled // to send a response, schedule an event if (!retryResp && !sendResponseEvent.scheduled()) schedule(sendResponseEvent, time); } else { // queue the packet for deletion pendingDelete.reset(pkt); } } void DRAMSim2::readComplete(unsigned id, uint64_t addr, uint64_t cycle) { assert(cycle == divCeil(curTick() - startTick, wrapper.clockPeriod() * SimClock::Int::ns)); DPRINTF(DRAMSim2, "Read to address %lld complete\n", addr); // get the outstanding reads for the address in question auto p = outstandingReads.find(addr); assert(p != outstandingReads.end()); // first in first out, which is not necessarily true, but it is // the best we can do at this point PacketPtr pkt = p->second.front(); p->second.pop(); if (p->second.empty()) outstandingReads.erase(p); // no need to check for drain here as the next call will add a // response to the response queue straight away assert(nbrOutstandingReads != 0); --nbrOutstandingReads; // perform the actual memory access accessAndRespond(pkt); } void DRAMSim2::writeComplete(unsigned id, uint64_t addr, uint64_t cycle) { assert(cycle == divCeil(curTick() - startTick, wrapper.clockPeriod() * SimClock::Int::ns)); DPRINTF(DRAMSim2, "Write to address %lld complete\n", addr); // get the outstanding reads for the address in question auto p = outstandingWrites.find(addr); assert(p != outstandingWrites.end()); // we have already responded, and this is only to keep track of // what is outstanding p->second.pop(); if (p->second.empty()) outstandingWrites.erase(p); assert(nbrOutstandingWrites != 0); --nbrOutstandingWrites; if (nbrOutstanding() == 0) signalDrainDone(); } BaseSlavePort& DRAMSim2::getSlavePort(const std::string &if_name, PortID idx) { if (if_name != "port") { return MemObject::getSlavePort(if_name, idx); } else { return port; } } DrainState DRAMSim2::drain() { // check our outstanding reads and writes and if any they need to // drain return nbrOutstanding() != 0 ? DrainState::Draining : DrainState::Drained; } DRAMSim2::MemoryPort::MemoryPort(const std::string& _name, DRAMSim2& _memory) : SlavePort(_name, &_memory), memory(_memory) { } AddrRangeList DRAMSim2::MemoryPort::getAddrRanges() const { AddrRangeList ranges; ranges.push_back(memory.getAddrRange()); return ranges; } Tick DRAMSim2::MemoryPort::recvAtomic(PacketPtr pkt) { return memory.recvAtomic(pkt); } void DRAMSim2::MemoryPort::recvFunctional(PacketPtr pkt) { memory.recvFunctional(pkt); } bool DRAMSim2::MemoryPort::recvTimingReq(PacketPtr pkt) { // pass it to the memory controller return memory.recvTimingReq(pkt); } void DRAMSim2::MemoryPort::recvRespRetry() { memory.recvRespRetry(); } DRAMSim2* DRAMSim2Params::create() { return new DRAMSim2(this); }