/* * Copyright (c) 2014 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Alexandru Dutu */ /** * @file * Declaration of a multi-level page table. */ #ifndef __MEM_MULTI_LEVEL_PAGE_TABLE_HH__ #define __MEM_MULTI_LEVEL_PAGE_TABLE_HH__ #include #include "base/types.hh" #include "mem/page_table.hh" class System; /** * This class implements an in-memory multi-level page table that can be * configured to follow ISA specifications. It can be used instead of the * PageTable class in SE mode to allow CPU models (e.g. X86KvmCPU) * to do a normal page table walk. * * To reduce memory required to store the page table, a multi-level page * table stores its translations similarly with a radix tree. Let n be * the number of levels and {Ln, Ln-1, ..., L1, L0} a set that specifies * the number of entries for each level as base 2 logarithm values. A * multi-level page table will store its translations at level 0 (the * leaves of the tree) and it will be layed out in memory in the * following way: * * +------------------------------+ * level n |Ln-1_E0|Ln-1_E1|...|Ln-1_E2^Ln| * +------------------------------+ * / \ * +------------------------+ +------------------------+ * level n-1 |Ln-2_E0|...|Ln-2_E2^Ln-1| |Ln-2_E0|...|Ln-2_E2^Ln-1| * +------------------------+ +------------------------+ * / \ / \ * . * . * . * / / \ * +------------------+ +------------+ +------------+ * level 1 |L0_E1|...|L0_E2^L1| |...|L0_E2^L1| ... |...|L0_E2^L1| * +------------------+ +------------+ +------------+ * , where * +------------------------------+ * |Lk-1_E0|Lk-1_E1|...|Lk-1_E2^Lk| * +------------------------------+ * is a level k entry that holds 2^Lk entries in Lk-1 level. * * Essentially, a level n entry will contain 2^Ln level n-1 entries, * a level n-1 entry will hold 2^Ln-1 level n-2 entries etc. * * The virtual address is split into offsets that index into the * different levels of the page table. * * +--------------------------------+ * |LnOffset|...|L1Offset|PageOffset| * +--------------------------------+ * * For example L0Offset will be formed by the bits in range * [log2(PageOffset), log2(PageOffset)+L0]. * * For every level of the page table, from n to 1, the base address * of the entry is loaded, the offset in the virtual address for * that particular level is used to index into the entry which * will reveal the memory address of the entry in the next level. * * @see MultiLevelPageTable */ namespace { template Addr prepTopTable(System *system, Addr pageSize) { Addr addr = system->allocPhysPages(First::tableSize()); PortProxy &p = system->physProxy; p.memsetBlob(addr, 0, First::tableSize() * pageSize); return addr; } template struct LastType; template struct LastType { typedef typename LastType::type type; }; template struct LastType { typedef Only type; }; template struct WalkWrapper; template struct WalkWrapper { static void walk(System *system, Addr pageSize, Addr table, Addr vaddr, bool allocate, Final *entry) { entry->read(system->physProxy, table, vaddr); } }; template struct WalkWrapper { static void walk(System *system, Addr pageSize, Addr table, Addr vaddr, bool allocate, Final *entry) { First first; first.read(system->physProxy, table, vaddr); Addr next; if (!first.present()) { fatal_if(!allocate, "Page fault while walking the page table."); next = prepTopTable(system, pageSize); first.reset(next); first.write(system->physProxy); } else { next = first.paddr(); } WalkWrapper::walk( system, pageSize, next, vaddr, allocate, entry); } }; template void walk(System *system, Addr pageSize, Addr table, Addr vaddr, bool allocate, typename LastType::type *entry) { WalkWrapper::type, EntryTypes...>::walk( system, pageSize, table, vaddr, allocate, entry); } } template class MultiLevelPageTable : public EmulationPageTable { typedef typename LastType::type Final; /** * Pointer to System object */ System *system; /** * Physical address to the last level of the page table */ Addr _basePtr; public: MultiLevelPageTable(const std::string &__name, uint64_t _pid, System *_sys, Addr pageSize) : EmulationPageTable(__name, _pid, pageSize), system(_sys) {} ~MultiLevelPageTable() {} void initState(ThreadContext* tc) override { _basePtr = prepTopTable(system, pageSize); } Addr basePtr() { return _basePtr; } void map(Addr vaddr, Addr paddr, int64_t size, uint64_t flags = 0) override { EmulationPageTable::map(vaddr, paddr, size, flags); Final entry; for (int64_t offset = 0; offset < size; offset += pageSize) { walk(system, pageSize, _basePtr, vaddr + offset, true, &entry); entry.reset(paddr + offset, true, flags & Uncacheable, flags & ReadOnly); entry.write(system->physProxy); DPRINTF(MMU, "New mapping: %#x-%#x\n", vaddr + offset, paddr + offset); } } void remap(Addr vaddr, int64_t size, Addr new_vaddr) override { EmulationPageTable::remap(vaddr, size, new_vaddr); Final old_entry, new_entry; for (int64_t offset = 0; offset < size; offset += pageSize) { // Unmap the original mapping. walk(system, pageSize, _basePtr, vaddr + offset, false, &old_entry); old_entry.present(false); old_entry.write(system->physProxy); // Map the new one. walk(system, pageSize, _basePtr, new_vaddr + offset, true, &new_entry); new_entry.reset(old_entry.paddr(), true, old_entry.uncacheable(), old_entry.readonly()); new_entry.write(system->physProxy); } } void unmap(Addr vaddr, int64_t size) override { EmulationPageTable::unmap(vaddr, size); Final entry; for (int64_t offset = 0; offset < size; offset += pageSize) { walk(system, pageSize, _basePtr, vaddr + offset, false, &entry); fatal_if(!entry.present(), "PageTable::unmap: Address %#x not mapped.", vaddr); entry.present(false); entry.write(system->physProxy); DPRINTF(MMU, "Unmapping: %#x\n", vaddr); } } void serialize(CheckpointOut &cp) const override { EmulationPageTable::serialize(cp); /** Since, the page table is stored in system memory * which is serialized separately, we will serialize * just the base pointer */ paramOut(cp, "ptable.pointer", _basePtr); } void unserialize(CheckpointIn &cp) override { EmulationPageTable::unserialize(cp); paramIn(cp, "ptable.pointer", _basePtr); } }; #endif // __MEM_MULTI_LEVEL_PAGE_TABLE_HH__