/* * Copyright (c) 2012 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2006 The Regents of The University of Michigan * Copyright (c) 2010 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ron Dreslinski * Steve Reinhardt * Ali Saidi * Andreas Hansson */ /** * @file * Declaration of the Packet class. */ #ifndef __MEM_PACKET_HH__ #define __MEM_PACKET_HH__ #include #include #include #include "base/cast.hh" #include "base/compiler.hh" #include "base/flags.hh" #include "base/misc.hh" #include "base/printable.hh" #include "base/types.hh" #include "mem/request.hh" #include "sim/core.hh" class Packet; typedef Packet *PacketPtr; typedef uint8_t* PacketDataPtr; typedef std::list PacketList; class MemCmd { friend class Packet; public: /** * List of all commands associated with a packet. */ enum Command { InvalidCmd, ReadReq, ReadResp, ReadRespWithInvalidate, WriteReq, WriteResp, Writeback, SoftPFReq, HardPFReq, SoftPFResp, HardPFResp, // WriteInvalidateReq transactions used to be generated by the // DMA ports when writing full blocks to memory, however, it // is not used anymore since we put the I/O cache in place to // deal with partial block writes. Hence, WriteInvalidateReq // and WriteInvalidateResp are currently unused. The // implication is that the I/O cache does read-exclusive // operations on every full-cache-block DMA, and ultimately // this needs to be fixed. WriteInvalidateReq, WriteInvalidateResp, UpgradeReq, SCUpgradeReq, // Special "weak" upgrade for StoreCond UpgradeResp, SCUpgradeFailReq, // Failed SCUpgradeReq in MSHR (never sent) UpgradeFailResp, // Valid for SCUpgradeReq only ReadExReq, ReadExResp, LoadLockedReq, StoreCondReq, StoreCondFailReq, // Failed StoreCondReq in MSHR (never sent) StoreCondResp, SwapReq, SwapResp, MessageReq, MessageResp, // Error responses // @TODO these should be classified as responses rather than // requests; coding them as requests initially for backwards // compatibility InvalidDestError, // packet dest field invalid BadAddressError, // memory address invalid FunctionalReadError, // unable to fulfill functional read FunctionalWriteError, // unable to fulfill functional write // Fake simulator-only commands PrintReq, // Print state matching address FlushReq, //request for a cache flush InvalidationReq, // request for address to be invalidated from lsq NUM_MEM_CMDS }; private: /** * List of command attributes. */ enum Attribute { IsRead, //!< Data flows from responder to requester IsWrite, //!< Data flows from requester to responder IsUpgrade, IsInvalidate, NeedsExclusive, //!< Requires exclusive copy to complete in-cache IsRequest, //!< Issued by requester IsResponse, //!< Issue by responder NeedsResponse, //!< Requester needs response from target IsSWPrefetch, IsHWPrefetch, IsLlsc, //!< Alpha/MIPS LL or SC access HasData, //!< There is an associated payload IsError, //!< Error response IsPrint, //!< Print state matching address (for debugging) IsFlush, //!< Flush the address from caches NUM_COMMAND_ATTRIBUTES }; /** * Structure that defines attributes and other data associated * with a Command. */ struct CommandInfo { /// Set of attribute flags. const std::bitset attributes; /// Corresponding response for requests; InvalidCmd if no /// response is applicable. const Command response; /// String representation (for printing) const std::string str; }; /// Array to map Command enum to associated info. static const CommandInfo commandInfo[]; private: Command cmd; bool testCmdAttrib(MemCmd::Attribute attrib) const { return commandInfo[cmd].attributes[attrib] != 0; } public: bool isRead() const { return testCmdAttrib(IsRead); } bool isWrite() const { return testCmdAttrib(IsWrite); } bool isUpgrade() const { return testCmdAttrib(IsUpgrade); } bool isRequest() const { return testCmdAttrib(IsRequest); } bool isResponse() const { return testCmdAttrib(IsResponse); } bool needsExclusive() const { return testCmdAttrib(NeedsExclusive); } bool needsResponse() const { return testCmdAttrib(NeedsResponse); } bool isInvalidate() const { return testCmdAttrib(IsInvalidate); } bool hasData() const { return testCmdAttrib(HasData); } bool isReadWrite() const { return isRead() && isWrite(); } bool isLLSC() const { return testCmdAttrib(IsLlsc); } bool isError() const { return testCmdAttrib(IsError); } bool isPrint() const { return testCmdAttrib(IsPrint); } bool isFlush() const { return testCmdAttrib(IsFlush); } const Command responseCommand() const { return commandInfo[cmd].response; } /// Return the string to a cmd given by idx. const std::string &toString() const { return commandInfo[cmd].str; } int toInt() const { return (int)cmd; } MemCmd(Command _cmd) : cmd(_cmd) { } MemCmd(int _cmd) : cmd((Command)_cmd) { } MemCmd() : cmd(InvalidCmd) { } bool operator==(MemCmd c2) const { return (cmd == c2.cmd); } bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); } }; /** * A Packet is used to encapsulate a transfer between two objects in * the memory system (e.g., the L1 and L2 cache). (In contrast, a * single Request travels all the way from the requester to the * ultimate destination and back, possibly being conveyed by several * different Packets along the way.) */ class Packet : public Printable { public: typedef uint32_t FlagsType; typedef ::Flags Flags; private: static const FlagsType PUBLIC_FLAGS = 0x00000000; static const FlagsType PRIVATE_FLAGS = 0x00007F0F; static const FlagsType COPY_FLAGS = 0x0000000F; static const FlagsType SHARED = 0x00000001; // Special control flags /// Special timing-mode atomic snoop for multi-level coherence. static const FlagsType EXPRESS_SNOOP = 0x00000002; /// Does supplier have exclusive copy? /// Useful for multi-level coherence. static const FlagsType SUPPLY_EXCLUSIVE = 0x00000004; // Snoop response flags static const FlagsType MEM_INHIBIT = 0x00000008; /// Are the 'addr' and 'size' fields valid? static const FlagsType VALID_ADDR = 0x00000100; static const FlagsType VALID_SIZE = 0x00000200; /// Is the data pointer set to a value that shouldn't be freed /// when the packet is destroyed? static const FlagsType STATIC_DATA = 0x00001000; /// The data pointer points to a value that should be freed when /// the packet is destroyed. static const FlagsType DYNAMIC_DATA = 0x00002000; /// the data pointer points to an array (thus delete []) needs to /// be called on it rather than simply delete. static const FlagsType ARRAY_DATA = 0x00004000; /// suppress the error if this packet encounters a functional /// access failure. static const FlagsType SUPPRESS_FUNC_ERROR = 0x00008000; Flags flags; public: typedef MemCmd::Command Command; /// The command field of the packet. MemCmd cmd; /// A pointer to the original request. RequestPtr req; private: /** * A pointer to the data being transfered. It can be differnt * sizes at each level of the heirarchy so it belongs in the * packet, not request. This may or may not be populated when a * responder recieves the packet. If not populated it memory should * be allocated. */ PacketDataPtr data; /// The address of the request. This address could be virtual or /// physical, depending on the system configuration. Addr addr; /// The size of the request or transfer. unsigned size; /** * Source port identifier set on a request packet to enable * appropriate routing of the responses. The source port * identifier is set by any multiplexing component, e.g. a bus, as * the timing responses need this information to be routed back to * the appropriate port at a later point in time. The field can be * updated (over-written) as the request packet passes through * additional multiplexing components, and it is their * responsibility to remember the original source port identifier, * for example by using an appropriate sender state. The latter is * done in the cache and bridge. */ PortID src; /** * Destination port identifier that is present on all response * packets that passed through a multiplexing component as a * request packet. The source port identifier is turned into a * destination port identifier when the packet is turned into a * response, and the destination is used, e.g. by the bus, to * select the appropriate path through the interconnect. */ PortID dest; /** * The original value of the command field. Only valid when the * current command field is an error condition; in that case, the * previous contents of the command field are copied here. This * field is *not* set on non-error responses. */ MemCmd origCmd; /** * These values specify the range of bytes found that satisfy a * functional read. */ uint16_t bytesValidStart; uint16_t bytesValidEnd; public: /// Used to calculate latencies for each packet. Tick time; /// The time at which the packet will be fully transmitted Tick finishTime; /// The time at which the first chunk of the packet will be transmitted Tick firstWordTime; /** * A virtual base opaque structure used to hold state associated * with the packet but specific to the sending device (e.g., an * MSHR). A pointer to this state is returned in the packet's * response so that the sender can quickly look up the state * needed to process it. A specific subclass would be derived * from this to carry state specific to a particular sending * device. */ struct SenderState { virtual ~SenderState() {} }; /** * Object used to maintain state of a PrintReq. The senderState * field of a PrintReq should always be of this type. */ class PrintReqState : public SenderState { private: /** * An entry in the label stack. */ struct LabelStackEntry { const std::string label; std::string *prefix; bool labelPrinted; LabelStackEntry(const std::string &_label, std::string *_prefix); }; typedef std::list LabelStack; LabelStack labelStack; std::string *curPrefixPtr; public: std::ostream &os; const int verbosity; PrintReqState(std::ostream &os, int verbosity = 0); ~PrintReqState(); /** * Returns the current line prefix. */ const std::string &curPrefix() { return *curPrefixPtr; } /** * Push a label onto the label stack, and prepend the given * prefix string onto the current prefix. Labels will only be * printed if an object within the label's scope is printed. */ void pushLabel(const std::string &lbl, const std::string &prefix = " "); /** * Pop a label off the label stack. */ void popLabel(); /** * Print all of the pending unprinted labels on the * stack. Called by printObj(), so normally not called by * users unless bypassing printObj(). */ void printLabels(); /** * Print a Printable object to os, because it matched the * address on a PrintReq. */ void printObj(Printable *obj); }; /** * This packet's sender state. Devices should use dynamic_cast<> * to cast to the state appropriate to the sender. The intent of * this variable is to allow a device to attach extra information * to a request. A response packet must return the sender state * that was attached to the original request (even if a new packet * is created). */ SenderState *senderState; /// Return the string name of the cmd field (for debugging and /// tracing). const std::string &cmdString() const { return cmd.toString(); } /// Return the index of this command. inline int cmdToIndex() const { return cmd.toInt(); } bool isRead() const { return cmd.isRead(); } bool isWrite() const { return cmd.isWrite(); } bool isUpgrade() const { return cmd.isUpgrade(); } bool isRequest() const { return cmd.isRequest(); } bool isResponse() const { return cmd.isResponse(); } bool needsExclusive() const { return cmd.needsExclusive(); } bool needsResponse() const { return cmd.needsResponse(); } bool isInvalidate() const { return cmd.isInvalidate(); } bool hasData() const { return cmd.hasData(); } bool isReadWrite() const { return cmd.isReadWrite(); } bool isLLSC() const { return cmd.isLLSC(); } bool isError() const { return cmd.isError(); } bool isPrint() const { return cmd.isPrint(); } bool isFlush() const { return cmd.isFlush(); } // Snoop flags void assertMemInhibit() { flags.set(MEM_INHIBIT); } bool memInhibitAsserted() { return flags.isSet(MEM_INHIBIT); } void assertShared() { flags.set(SHARED); } bool sharedAsserted() { return flags.isSet(SHARED); } // Special control flags void setExpressSnoop() { flags.set(EXPRESS_SNOOP); } bool isExpressSnoop() { return flags.isSet(EXPRESS_SNOOP); } void setSupplyExclusive() { flags.set(SUPPLY_EXCLUSIVE); } void clearSupplyExclusive() { flags.clear(SUPPLY_EXCLUSIVE); } bool isSupplyExclusive() { return flags.isSet(SUPPLY_EXCLUSIVE); } void setSuppressFuncError() { flags.set(SUPPRESS_FUNC_ERROR); } bool suppressFuncError() { return flags.isSet(SUPPRESS_FUNC_ERROR); } // Network error conditions... encapsulate them as methods since // their encoding keeps changing (from result field to command // field, etc.) void setBadAddress() { assert(isResponse()); cmd = MemCmd::BadAddressError; } bool hadBadAddress() const { return cmd == MemCmd::BadAddressError; } void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; } bool isSrcValid() const { return src != InvalidPortID; } /// Accessor function to get the source index of the packet. PortID getSrc() const { assert(isSrcValid()); return src; } /// Accessor function to set the source index of the packet. void setSrc(PortID _src) { src = _src; } /// Reset source field, e.g. to retransmit packet on different bus. void clearSrc() { src = InvalidPortID; } bool isDestValid() const { return dest != InvalidPortID; } /// Accessor function for the destination index of the packet. PortID getDest() const { assert(isDestValid()); return dest; } /// Accessor function to set the destination index of the packet. void setDest(PortID _dest) { dest = _dest; } /// Reset destination field, e.g. to turn a response into a request again. void clearDest() { dest = InvalidPortID; } Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; } /** * Update the address of this packet mid-transaction. This is used * by the address mapper to change an already set address to a new * one based on the system configuration. It is intended to remap * an existing address, so it asserts that the current address is * valid. */ void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; } unsigned getSize() const { assert(flags.isSet(VALID_SIZE)); return size; } Addr getOffset(int blkSize) const { return getAddr() & (Addr)(blkSize - 1); } /** * It has been determined that the SC packet should successfully update * memory. Therefore, convert this SC packet to a normal write. */ void convertScToWrite() { assert(isLLSC()); assert(isWrite()); cmd = MemCmd::WriteReq; } /** * When ruby is in use, Ruby will monitor the cache line and thus M5 * phys memory should treat LL ops as normal reads. */ void convertLlToRead() { assert(isLLSC()); assert(isRead()); cmd = MemCmd::ReadReq; } /** * Constructor. Note that a Request object must be constructed * first, but the Requests's physical address and size fields need * not be valid. The command must be supplied. */ Packet(Request *_req, MemCmd _cmd) : cmd(_cmd), req(_req), data(NULL), src(InvalidPortID), dest(InvalidPortID), bytesValidStart(0), bytesValidEnd(0), time(curTick()), senderState(NULL) { if (req->hasPaddr()) { addr = req->getPaddr(); flags.set(VALID_ADDR); } if (req->hasSize()) { size = req->getSize(); flags.set(VALID_SIZE); } } /** * Alternate constructor if you are trying to create a packet with * a request that is for a whole block, not the address from the * req. this allows for overriding the size/addr of the req. */ Packet(Request *_req, MemCmd _cmd, int _blkSize) : cmd(_cmd), req(_req), data(NULL), src(InvalidPortID), dest(InvalidPortID), bytesValidStart(0), bytesValidEnd(0), time(curTick()), senderState(NULL) { if (req->hasPaddr()) { addr = req->getPaddr() & ~(_blkSize - 1); flags.set(VALID_ADDR); } size = _blkSize; flags.set(VALID_SIZE); } /** * Alternate constructor for copying a packet. Copy all fields * *except* if the original packet's data was dynamic, don't copy * that, as we can't guarantee that the new packet's lifetime is * less than that of the original packet. In this case the new * packet should allocate its own data. */ Packet(Packet *pkt, bool clearFlags = false) : cmd(pkt->cmd), req(pkt->req), data(pkt->flags.isSet(STATIC_DATA) ? pkt->data : NULL), addr(pkt->addr), size(pkt->size), src(pkt->src), dest(pkt->dest), bytesValidStart(pkt->bytesValidStart), bytesValidEnd(pkt->bytesValidEnd), time(curTick()), senderState(pkt->senderState) { if (!clearFlags) flags.set(pkt->flags & COPY_FLAGS); flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE)); flags.set(pkt->flags & STATIC_DATA); } /** * clean up packet variables */ ~Packet() { // If this is a request packet for which there's no response, // delete the request object here, since the requester will // never get the chance. if (req && isRequest() && !needsResponse()) delete req; deleteData(); } /** * Reinitialize packet address and size from the associated * Request object, and reset other fields that may have been * modified by a previous transaction. Typically called when a * statically allocated Request/Packet pair is reused for multiple * transactions. */ void reinitFromRequest() { assert(req->hasPaddr()); flags = 0; addr = req->getPaddr(); size = req->getSize(); time = req->time(); flags.set(VALID_ADDR|VALID_SIZE); deleteData(); } /** * Take a request packet and modify it in place to be suitable for * returning as a response to that request. The source field is * turned into the destination, and subsequently cleared. Note * that the latter is not necessary for atomic requests, but * causes no harm as neither field is valid. */ void makeResponse() { assert(needsResponse()); assert(isRequest()); origCmd = cmd; cmd = cmd.responseCommand(); // responses are never express, even if the snoop that // triggered them was flags.clear(EXPRESS_SNOOP); dest = src; clearSrc(); } void makeAtomicResponse() { makeResponse(); } void makeTimingResponse() { makeResponse(); } void setFunctionalResponseStatus(bool success) { if (!success) { if (isWrite()) { cmd = MemCmd::FunctionalWriteError; } else { cmd = MemCmd::FunctionalReadError; } } } void setSize(unsigned size) { assert(!flags.isSet(VALID_SIZE)); this->size = size; flags.set(VALID_SIZE); } /** * Set the data pointer to the following value that should not be * freed. */ template void dataStatic(T *p) { assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA|ARRAY_DATA)); data = (PacketDataPtr)p; flags.set(STATIC_DATA); } /** * Set the data pointer to a value that should have delete [] * called on it. */ template void dataDynamicArray(T *p) { assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA|ARRAY_DATA)); data = (PacketDataPtr)p; flags.set(DYNAMIC_DATA|ARRAY_DATA); } /** * set the data pointer to a value that should have delete called * on it. */ template void dataDynamic(T *p) { assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA|ARRAY_DATA)); data = (PacketDataPtr)p; flags.set(DYNAMIC_DATA); } /** * get a pointer to the data ptr. */ template T* getPtr(bool null_ok = false) { assert(null_ok || flags.isSet(STATIC_DATA|DYNAMIC_DATA)); return (T*)data; } /** * return the value of what is pointed to in the packet. */ template T get(); /** * set the value in the data pointer to v. */ template void set(T v); /** * Copy data into the packet from the provided pointer. */ void setData(uint8_t *p) { if (p != getPtr()) std::memcpy(getPtr(), p, getSize()); } /** * Copy data into the packet from the provided block pointer, * which is aligned to the given block size. */ void setDataFromBlock(uint8_t *blk_data, int blkSize) { setData(blk_data + getOffset(blkSize)); } /** * Copy data from the packet to the provided block pointer, which * is aligned to the given block size. */ void writeData(uint8_t *p) { std::memcpy(p, getPtr(), getSize()); } /** * Copy data from the packet to the memory at the provided pointer. */ void writeDataToBlock(uint8_t *blk_data, int blkSize) { writeData(blk_data + getOffset(blkSize)); } /** * delete the data pointed to in the data pointer. Ok to call to * matter how data was allocted. */ void deleteData() { if (flags.isSet(ARRAY_DATA)) delete [] data; else if (flags.isSet(DYNAMIC_DATA)) delete data; flags.clear(STATIC_DATA|DYNAMIC_DATA|ARRAY_DATA); data = NULL; } /** If there isn't data in the packet, allocate some. */ void allocate() { if (data) { assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA)); return; } assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA)); flags.set(DYNAMIC_DATA|ARRAY_DATA); data = new uint8_t[getSize()]; } /** * Check a functional request against a memory value represented * by a base/size pair and an associated data array. If the * functional request is a read, it may be satisfied by the memory * value. If the functional request is a write, it may update the * memory value. */ bool checkFunctional(Printable *obj, Addr base, int size, uint8_t *data); /** * Check a functional request against a memory value stored in * another packet (i.e. an in-transit request or response). */ bool checkFunctional(PacketPtr other) { uint8_t *data = other->hasData() ? other->getPtr() : NULL; return checkFunctional(other, other->getAddr(), other->getSize(), data); } /** * Push label for PrintReq (safe to call unconditionally). */ void pushLabel(const std::string &lbl) { if (isPrint()) safe_cast(senderState)->pushLabel(lbl); } /** * Pop label for PrintReq (safe to call unconditionally). */ void popLabel() { if (isPrint()) safe_cast(senderState)->popLabel(); } void print(std::ostream &o, int verbosity = 0, const std::string &prefix = "") const; }; #endif //__MEM_PACKET_HH