/* * Copyright (c) 2010 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ron Dreslinski * Ali Saidi */ #include #include #include #include #include #include #include #include #include #include #include "arch/isa_traits.hh" #include "arch/registers.hh" #include "base/intmath.hh" #include "base/misc.hh" #include "base/random.hh" #include "base/types.hh" #include "config/full_system.hh" #include "config/the_isa.hh" #include "mem/packet_access.hh" #include "mem/physical.hh" #include "sim/eventq.hh" using namespace std; using namespace TheISA; PhysicalMemory::PhysicalMemory(const Params *p) : MemObject(p), pmemAddr(NULL), lat(p->latency), lat_var(p->latency_var), _size(params()->range.size()), _start(params()->range.start) { if (size() % TheISA::PageBytes != 0) panic("Memory Size not divisible by page size\n"); if (params()->null) return; if (params()->file == "") { int map_flags = MAP_ANON | MAP_PRIVATE; pmemAddr = (uint8_t *)mmap(NULL, size(), PROT_READ | PROT_WRITE, map_flags, -1, 0); } else { int map_flags = MAP_PRIVATE; int fd = open(params()->file.c_str(), O_RDONLY); _size = lseek(fd, 0, SEEK_END); lseek(fd, 0, SEEK_SET); pmemAddr = (uint8_t *)mmap(NULL, roundUp(size(), PAGE_SIZE), PROT_READ | PROT_WRITE, map_flags, fd, 0); } if (pmemAddr == (void *)MAP_FAILED) { perror("mmap"); if (params()->file == "") fatal("Could not mmap!\n"); else fatal("Could not find file: %s\n", params()->file); } //If requested, initialize all the memory to 0 if (p->zero) memset(pmemAddr, 0, size()); } void PhysicalMemory::init() { if (ports.size() == 0) { fatal("PhysicalMemory object %s is unconnected!", name()); } for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) { if (*pi) (*pi)->sendStatusChange(Port::RangeChange); } } PhysicalMemory::~PhysicalMemory() { if (pmemAddr) munmap((char*)pmemAddr, size()); } unsigned PhysicalMemory::deviceBlockSize() const { //Can accept anysize request return 0; } Tick PhysicalMemory::calculateLatency(PacketPtr pkt) { Tick latency = lat; if (lat_var != 0) latency += random_mt.random(0, lat_var); return latency; } // Add load-locked to tracking list. Should only be called if the // operation is a load and the LLSC flag is set. void PhysicalMemory::trackLoadLocked(PacketPtr pkt) { Request *req = pkt->req; Addr paddr = LockedAddr::mask(req->getPaddr()); // first we check if we already have a locked addr for this // xc. Since each xc only gets one, we just update the // existing record with the new address. list::iterator i; for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) { if (i->matchesContext(req)) { DPRINTF(LLSC, "Modifying lock record: context %d addr %#x\n", req->contextId(), paddr); i->addr = paddr; return; } } // no record for this xc: need to allocate a new one DPRINTF(LLSC, "Adding lock record: context %d addr %#x\n", req->contextId(), paddr); lockedAddrList.push_front(LockedAddr(req)); } // Called on *writes* only... both regular stores and // store-conditional operations. Check for conventional stores which // conflict with locked addresses, and for success/failure of store // conditionals. bool PhysicalMemory::checkLockedAddrList(PacketPtr pkt) { Request *req = pkt->req; Addr paddr = LockedAddr::mask(req->getPaddr()); bool isLLSC = pkt->isLLSC(); // Initialize return value. Non-conditional stores always // succeed. Assume conditional stores will fail until proven // otherwise. bool success = !isLLSC; // Iterate over list. Note that there could be multiple matching // records, as more than one context could have done a load locked // to this location. list::iterator i = lockedAddrList.begin(); while (i != lockedAddrList.end()) { if (i->addr == paddr) { // we have a matching address if (isLLSC && i->matchesContext(req)) { // it's a store conditional, and as far as the memory // system can tell, the requesting context's lock is // still valid. DPRINTF(LLSC, "StCond success: context %d addr %#x\n", req->contextId(), paddr); success = true; } // Get rid of our record of this lock and advance to next DPRINTF(LLSC, "Erasing lock record: context %d addr %#x\n", i->contextId, paddr); i = lockedAddrList.erase(i); } else { // no match: advance to next record ++i; } } if (isLLSC) { req->setExtraData(success ? 1 : 0); } return success; } #if TRACING_ON #define CASE(A, T) \ case sizeof(T): \ DPRINTF(MemoryAccess,"%s of size %i on address 0x%x data 0x%x\n", \ A, pkt->getSize(), pkt->getAddr(), pkt->get()); \ break #define TRACE_PACKET(A) \ do { \ switch (pkt->getSize()) { \ CASE(A, uint64_t); \ CASE(A, uint32_t); \ CASE(A, uint16_t); \ CASE(A, uint8_t); \ default: \ DPRINTF(MemoryAccess, "%s of size %i on address 0x%x\n", \ A, pkt->getSize(), pkt->getAddr()); \ } \ } while (0) #else #define TRACE_PACKET(A) #endif Tick PhysicalMemory::doAtomicAccess(PacketPtr pkt) { assert(pkt->getAddr() >= start() && pkt->getAddr() + pkt->getSize() <= start() + size()); if (pkt->memInhibitAsserted()) { DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n", pkt->getAddr()); return 0; } uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start(); if (pkt->cmd == MemCmd::SwapReq) { IntReg overwrite_val; bool overwrite_mem; uint64_t condition_val64; uint32_t condition_val32; if (!pmemAddr) panic("Swap only works if there is real memory (i.e. null=False)"); assert(sizeof(IntReg) >= pkt->getSize()); overwrite_mem = true; // keep a copy of our possible write value, and copy what is at the // memory address into the packet std::memcpy(&overwrite_val, pkt->getPtr(), pkt->getSize()); std::memcpy(pkt->getPtr(), hostAddr, pkt->getSize()); if (pkt->req->isCondSwap()) { if (pkt->getSize() == sizeof(uint64_t)) { condition_val64 = pkt->req->getExtraData(); overwrite_mem = !std::memcmp(&condition_val64, hostAddr, sizeof(uint64_t)); } else if (pkt->getSize() == sizeof(uint32_t)) { condition_val32 = (uint32_t)pkt->req->getExtraData(); overwrite_mem = !std::memcmp(&condition_val32, hostAddr, sizeof(uint32_t)); } else panic("Invalid size for conditional read/write\n"); } if (overwrite_mem) std::memcpy(hostAddr, &overwrite_val, pkt->getSize()); assert(!pkt->req->isInstFetch()); TRACE_PACKET("Read/Write"); } else if (pkt->isRead()) { assert(!pkt->isWrite()); if (pkt->isLLSC()) { trackLoadLocked(pkt); } if (pmemAddr) memcpy(pkt->getPtr(), hostAddr, pkt->getSize()); TRACE_PACKET(pkt->req->isInstFetch() ? "IFetch" : "Read"); } else if (pkt->isWrite()) { if (writeOK(pkt)) { if (pmemAddr) memcpy(hostAddr, pkt->getPtr(), pkt->getSize()); assert(!pkt->req->isInstFetch()); TRACE_PACKET("Write"); } } else if (pkt->isInvalidate()) { //upgrade or invalidate if (pkt->needsResponse()) { pkt->makeAtomicResponse(); } } else { panic("unimplemented"); } if (pkt->needsResponse()) { pkt->makeAtomicResponse(); } return calculateLatency(pkt); } void PhysicalMemory::doFunctionalAccess(PacketPtr pkt) { assert(pkt->getAddr() >= start() && pkt->getAddr() + pkt->getSize() <= start() + size()); uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start(); if (pkt->isRead()) { if (pmemAddr) memcpy(pkt->getPtr(), hostAddr, pkt->getSize()); TRACE_PACKET("Read"); pkt->makeAtomicResponse(); } else if (pkt->isWrite()) { if (pmemAddr) memcpy(hostAddr, pkt->getPtr(), pkt->getSize()); TRACE_PACKET("Write"); pkt->makeAtomicResponse(); } else if (pkt->isPrint()) { Packet::PrintReqState *prs = dynamic_cast(pkt->senderState); // Need to call printLabels() explicitly since we're not going // through printObj(). prs->printLabels(); // Right now we just print the single byte at the specified address. ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr); } else { panic("PhysicalMemory: unimplemented functional command %s", pkt->cmdString()); } } Port * PhysicalMemory::getPort(const std::string &if_name, int idx) { // Accept request for "functional" port for backwards compatibility // with places where this function is called from C++. I'd prefer // to move all these into Python someday. if (if_name == "functional") { return new MemoryPort(csprintf("%s-functional", name()), this); } if (if_name != "port") { panic("PhysicalMemory::getPort: unknown port %s requested", if_name); } if (idx >= (int)ports.size()) { ports.resize(idx + 1); } if (ports[idx] != NULL) { panic("PhysicalMemory::getPort: port %d already assigned", idx); } MemoryPort *port = new MemoryPort(csprintf("%s-port%d", name(), idx), this); ports[idx] = port; return port; } void PhysicalMemory::recvStatusChange(Port::Status status) { } PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name, PhysicalMemory *_memory) : SimpleTimingPort(_name, _memory), memory(_memory) { } void PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status) { memory->recvStatusChange(status); } void PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &resp, bool &snoop) { memory->getAddressRanges(resp, snoop); } void PhysicalMemory::getAddressRanges(AddrRangeList &resp, bool &snoop) { snoop = false; resp.clear(); resp.push_back(RangeSize(start(), size())); } unsigned PhysicalMemory::MemoryPort::deviceBlockSize() const { return memory->deviceBlockSize(); } Tick PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt) { return memory->doAtomicAccess(pkt); } void PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt) { pkt->pushLabel(memory->name()); if (!checkFunctional(pkt)) { // Default implementation of SimpleTimingPort::recvFunctional() // calls recvAtomic() and throws away the latency; we can save a // little here by just not calculating the latency. memory->doFunctionalAccess(pkt); } pkt->popLabel(); } unsigned int PhysicalMemory::drain(Event *de) { int count = 0; for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) { count += (*pi)->drain(de); } if (count) changeState(Draining); else changeState(Drained); return count; } void PhysicalMemory::serialize(ostream &os) { if (!pmemAddr) return; gzFile compressedMem; string filename = name() + ".physmem"; SERIALIZE_SCALAR(filename); SERIALIZE_SCALAR(_size); // write memory file string thefile = Checkpoint::dir() + "/" + filename.c_str(); int fd = creat(thefile.c_str(), 0664); if (fd < 0) { perror("creat"); fatal("Can't open physical memory checkpoint file '%s'\n", filename); } compressedMem = gzdopen(fd, "wb"); if (compressedMem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); if (gzwrite(compressedMem, pmemAddr, size()) != (int)size()) { fatal("Write failed on physical memory checkpoint file '%s'\n", filename); } if (gzclose(compressedMem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); list::iterator i = lockedAddrList.begin(); vector lal_addr; vector lal_cid; while (i != lockedAddrList.end()) { lal_addr.push_back(i->addr); lal_cid.push_back(i->contextId); i++; } arrayParamOut(os, "lal_addr", lal_addr); arrayParamOut(os, "lal_cid", lal_cid); } void PhysicalMemory::unserialize(Checkpoint *cp, const string §ion) { if (!pmemAddr) return; gzFile compressedMem; long *tempPage; long *pmem_current; uint64_t curSize; uint32_t bytesRead; const uint32_t chunkSize = 16384; string filename; UNSERIALIZE_SCALAR(filename); filename = cp->cptDir + "/" + filename; // mmap memoryfile int fd = open(filename.c_str(), O_RDONLY); if (fd < 0) { perror("open"); fatal("Can't open physical memory checkpoint file '%s'", filename); } compressedMem = gzdopen(fd, "rb"); if (compressedMem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); // unmap file that was mmaped in the constructor // This is done here to make sure that gzip and open don't muck with our // nice large space of memory before we reallocate it munmap((char*)pmemAddr, size()); UNSERIALIZE_SCALAR(_size); if (size() > params()->range.size()) fatal("Memory size has changed!\n"); pmemAddr = (uint8_t *)mmap(NULL, size(), PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); if (pmemAddr == (void *)MAP_FAILED) { perror("mmap"); fatal("Could not mmap physical memory!\n"); } curSize = 0; tempPage = (long*)malloc(chunkSize); if (tempPage == NULL) fatal("Unable to malloc memory to read file %s\n", filename); /* Only copy bytes that are non-zero, so we don't give the VM system hell */ while (curSize < size()) { bytesRead = gzread(compressedMem, tempPage, chunkSize); if (bytesRead == 0) break; assert(bytesRead % sizeof(long) == 0); for (uint32_t x = 0; x < bytesRead / sizeof(long); x++) { if (*(tempPage+x) != 0) { pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long)); *pmem_current = *(tempPage+x); } } curSize += bytesRead; } free(tempPage); if (gzclose(compressedMem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); vector lal_addr; vector lal_cid; arrayParamIn(cp, section, "lal_addr", lal_addr); arrayParamIn(cp, section, "lal_cid", lal_cid); for(int i = 0; i < lal_addr.size(); i++) lockedAddrList.push_front(LockedAddr(lal_addr[i], lal_cid[i])); } PhysicalMemory * PhysicalMemoryParams::create() { return new PhysicalMemory(this); }