/* * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ron Dreslinski * Ali Saidi */ #include <sys/types.h> #include <sys/mman.h> #include <errno.h> #include <fcntl.h> #include <unistd.h> #include <zlib.h> #include <iostream> #include <string> #include "base/misc.hh" #include "config/full_system.hh" #include "mem/packet_impl.hh" #include "mem/physical.hh" #include "sim/host.hh" #include "sim/builder.hh" #include "sim/eventq.hh" #include "arch/isa_traits.hh" using namespace std; using namespace TheISA; PhysicalMemory::PhysicalMemory(Params *p) : MemObject(p->name), pmemAddr(NULL), port(NULL), lat(p->latency), _params(p) { if (params()->addrRange.size() % TheISA::PageBytes != 0) panic("Memory Size not divisible by page size\n"); int map_flags = MAP_ANON | MAP_PRIVATE; pmemAddr = (uint8_t *)mmap(NULL, params()->addrRange.size(), PROT_READ | PROT_WRITE, map_flags, -1, 0); if (pmemAddr == (void *)MAP_FAILED) { perror("mmap"); fatal("Could not mmap!\n"); } pagePtr = 0; } void PhysicalMemory::init() { if (!port) panic("PhysicalMemory not connected to anything!"); port->sendStatusChange(Port::RangeChange); } PhysicalMemory::~PhysicalMemory() { if (pmemAddr) munmap(pmemAddr, params()->addrRange.size()); //Remove memPorts? } Addr PhysicalMemory::new_page() { Addr return_addr = pagePtr << LogVMPageSize; return_addr += params()->addrRange.start; ++pagePtr; return return_addr; } int PhysicalMemory::deviceBlockSize() { //Can accept anysize request return 0; } Tick PhysicalMemory::calculateLatency(Packet *pkt) { return lat; } void PhysicalMemory::doFunctionalAccess(Packet *pkt) { assert(pkt->getAddr() + pkt->getSize() < params()->addrRange.size()); switch (pkt->cmd) { case Packet::ReadReq: memcpy(pkt->getPtr<uint8_t>(), pmemAddr + pkt->getAddr() - params()->addrRange.start, pkt->getSize()); break; case Packet::WriteReq: memcpy(pmemAddr + pkt->getAddr() - params()->addrRange.start, pkt->getPtr<uint8_t>(), pkt->getSize()); // temporary hack: will need to add real LL/SC implementation // for cacheless systems later. if (pkt->req->getFlags() & LOCKED) { pkt->req->setScResult(1); } break; default: panic("unimplemented"); } pkt->result = Packet::Success; } Port * PhysicalMemory::getPort(const std::string &if_name, int idx) { if (if_name == "port" && idx == -1) { if (port != NULL) panic("PhysicalMemory::getPort: additional port requested to memory!"); port = new MemoryPort(name() + "-port", this); return port; } else if (if_name == "functional") { /* special port for functional writes at startup. */ return new MemoryPort(name() + "-funcport", this); } else { panic("PhysicalMemory::getPort: unknown port %s requested", if_name); } } void PhysicalMemory::recvStatusChange(Port::Status status) { } PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name, PhysicalMemory *_memory) : SimpleTimingPort(_name), memory(_memory) { } void PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status) { memory->recvStatusChange(status); } void PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &resp, AddrRangeList &snoop) { memory->getAddressRanges(resp, snoop); } void PhysicalMemory::getAddressRanges(AddrRangeList &resp, AddrRangeList &snoop) { snoop.clear(); resp.clear(); resp.push_back(RangeSize(params()->addrRange.start, params()->addrRange.size())); } int PhysicalMemory::MemoryPort::deviceBlockSize() { return memory->deviceBlockSize(); } Tick PhysicalMemory::MemoryPort::recvAtomic(Packet *pkt) { memory->doFunctionalAccess(pkt); return memory->calculateLatency(pkt); } void PhysicalMemory::MemoryPort::recvFunctional(Packet *pkt) { // Default implementation of SimpleTimingPort::recvFunctional() // calls recvAtomic() and throws away the latency; we can save a // little here by just not calculating the latency. memory->doFunctionalAccess(pkt); } unsigned int PhysicalMemory::drain(Event *de) { int count = port->drain(de); if (count) changeState(Draining); else changeState(Drained); return count; } void PhysicalMemory::serialize(ostream &os) { gzFile compressedMem; string filename = name() + ".physmem"; SERIALIZE_SCALAR(filename); // write memory file string thefile = Checkpoint::dir() + "/" + filename.c_str(); int fd = creat(thefile.c_str(), 0664); if (fd < 0) { perror("creat"); fatal("Can't open physical memory checkpoint file '%s'\n", filename); } compressedMem = gzdopen(fd, "wb"); if (compressedMem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); if (gzwrite(compressedMem, pmemAddr, params()->addrRange.size()) != params()->addrRange.size()) { fatal("Write failed on physical memory checkpoint file '%s'\n", filename); } if (gzclose(compressedMem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); } void PhysicalMemory::unserialize(Checkpoint *cp, const string §ion) { gzFile compressedMem; long *tempPage; long *pmem_current; uint64_t curSize; uint32_t bytesRead; const int chunkSize = 16384; string filename; UNSERIALIZE_SCALAR(filename); filename = cp->cptDir + "/" + filename; // mmap memoryfile int fd = open(filename.c_str(), O_RDONLY); if (fd < 0) { perror("open"); fatal("Can't open physical memory checkpoint file '%s'", filename); } compressedMem = gzdopen(fd, "rb"); if (compressedMem == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); // unmap file that was mmaped in the constructor // This is done here to make sure that gzip and open don't muck with our // nice large space of memory before we reallocate it munmap(pmemAddr, params()->addrRange.size()); pmemAddr = (uint8_t *)mmap(NULL, params()->addrRange.size(), PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); if (pmemAddr == (void *)MAP_FAILED) { perror("mmap"); fatal("Could not mmap physical memory!\n"); } curSize = 0; tempPage = (long*)malloc(chunkSize); if (tempPage == NULL) fatal("Unable to malloc memory to read file %s\n", filename); /* Only copy bytes that are non-zero, so we don't give the VM system hell */ while (curSize < params()->addrRange.size()) { bytesRead = gzread(compressedMem, tempPage, chunkSize); if (bytesRead != chunkSize && bytesRead != params()->addrRange.size() - curSize) fatal("Read failed on physical memory checkpoint file '%s'" " got %d bytes, expected %d or %d bytes\n", filename, bytesRead, chunkSize, params()->addrRange.size()-curSize); assert(bytesRead % sizeof(long) == 0); for (int x = 0; x < bytesRead/sizeof(long); x++) { if (*(tempPage+x) != 0) { pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long)); *pmem_current = *(tempPage+x); } } curSize += bytesRead; } free(tempPage); if (gzclose(compressedMem)) fatal("Close failed on physical memory checkpoint file '%s'\n", filename); } BEGIN_DECLARE_SIM_OBJECT_PARAMS(PhysicalMemory) Param<string> file; Param<Range<Addr> > range; Param<Tick> latency; END_DECLARE_SIM_OBJECT_PARAMS(PhysicalMemory) BEGIN_INIT_SIM_OBJECT_PARAMS(PhysicalMemory) INIT_PARAM_DFLT(file, "memory mapped file", ""), INIT_PARAM(range, "Device Address Range"), INIT_PARAM(latency, "Memory access latency") END_INIT_SIM_OBJECT_PARAMS(PhysicalMemory) CREATE_SIM_OBJECT(PhysicalMemory) { PhysicalMemory::Params *p = new PhysicalMemory::Params; p->name = getInstanceName(); p->addrRange = range; p->latency = latency; return new PhysicalMemory(p); } REGISTER_SIM_OBJECT("PhysicalMemory", PhysicalMemory)