/* * Copyright (c) 2012-2015 Advanced Micro Devices, Inc. * All rights reserved. * * For use for simulation and test purposes only * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Authors: Mithuna Thottethodi */ machine(MachineType:TCCdir, "AMD read-for-ownership directory for TCC (aka GPU L2)") : CacheMemory * directory; // Convention: wire buffers are prefixed with "w_" for clarity WireBuffer * w_reqToTCCDir; WireBuffer * w_respToTCCDir; WireBuffer * w_TCCUnblockToTCCDir; WireBuffer * w_reqToTCC; WireBuffer * w_probeToTCC; WireBuffer * w_respToTCC; int TCC_select_num_bits; Cycles response_latency := 5; Cycles directory_latency := 6; Cycles issue_latency := 120; // From the TCPs or SQCs MessageBuffer * requestFromTCP, network="From", virtual_network="1", vnet_type="request"; MessageBuffer * responseFromTCP, network="From", virtual_network="3", vnet_type="response"; MessageBuffer * unblockFromTCP, network="From", virtual_network="5", vnet_type="unblock"; // To the Cores. TCC deals only with TCPs/SQCs. CP cores do not communicate directly with TCC. MessageBuffer * probeToCore, network="To", virtual_network="1", vnet_type="request"; MessageBuffer * responseToCore, network="To", virtual_network="3", vnet_type="response"; // From the NB MessageBuffer * probeFromNB, network="From", virtual_network="0", vnet_type="request"; MessageBuffer * responseFromNB, network="From", virtual_network="2", vnet_type="response"; // To the NB MessageBuffer * requestToNB, network="To", virtual_network="0", vnet_type="request"; MessageBuffer * responseToNB, network="To", virtual_network="2", vnet_type="response"; MessageBuffer * unblockToNB, network="To", virtual_network="4", vnet_type="unblock"; MessageBuffer * triggerQueue, random="false"; { // STATES state_declaration(State, desc="Directory states", default="TCCdir_State_I") { // Base states I, AccessPermission:Invalid, desc="Invalid"; S, AccessPermission:Invalid, desc="Shared"; E, AccessPermission:Invalid, desc="Shared"; O, AccessPermission:Invalid, desc="Owner"; M, AccessPermission:Invalid, desc="Modified"; CP_I, AccessPermission:Invalid, desc="Blocked, must send data after acks are in, going to invalid"; B_I, AccessPermission:Invalid, desc="Blocked, need not send data after acks are in, going to invalid"; CP_O, AccessPermission:Invalid, desc="Blocked, must send data after acks are in, going to owned"; CP_S, AccessPermission:Invalid, desc="Blocked, must send data after acks are in, going to shared"; CP_OM, AccessPermission:Invalid, desc="Blocked, must send data after acks are in, going to O_M"; CP_SM, AccessPermission:Invalid, desc="Blocked, must send data after acks are in, going to S_M"; CP_ISM, AccessPermission:Invalid, desc="Blocked, must send data after acks are in, going to I_M"; CP_IOM, AccessPermission:Invalid, desc="Blocked, must send data after acks are in, going to I_M"; CP_OSIW, AccessPermission:Invalid, desc="Blocked, must send data after acks+CancelWB are in, going to I_C"; // Transient states and busy states used for handling side (TCC-facing) interactions BW_S, AccessPermission:Invalid, desc="Blocked, Awaiting TCC unblock"; BW_E, AccessPermission:Invalid, desc="Blocked, Awaiting TCC unblock"; BW_O, AccessPermission:Invalid, desc="Blocked, Awaiting TCC unblock"; BW_M, AccessPermission:Invalid, desc="Blocked, Awaiting TCC unblock"; // Transient states and busy states used for handling upward (TCP-facing) interactions I_M, AccessPermission:Invalid, desc="Invalid, issued RdBlkM, have not seen response yet"; I_ES, AccessPermission:Invalid, desc="Invalid, issued RdBlk, have not seen response yet"; I_S, AccessPermission:Invalid, desc="Invalid, issued RdBlkS, have not seen response yet"; BBS_S, AccessPermission:Invalid, desc="Blocked, going from S to S"; BBO_O, AccessPermission:Invalid, desc="Blocked, going from O to O"; BBM_M, AccessPermission:Invalid, desc="Blocked, going from M to M, waiting for data to forward"; BBM_O, AccessPermission:Invalid, desc="Blocked, going from M to O, waiting for data to forward"; BB_M, AccessPermission:Invalid, desc="Blocked, going from M to M, waiting for unblock"; BB_O, AccessPermission:Invalid, desc="Blocked, going from M to O, waiting for unblock"; BB_OO, AccessPermission:Invalid, desc="Blocked, going from O to O (adding sharers), waiting for unblock"; BB_S, AccessPermission:Invalid, desc="Blocked, going to S, waiting for (possible multiple) unblock(s)"; BBS_M, AccessPermission:Invalid, desc="Blocked, going from S or O to M"; BBO_M, AccessPermission:Invalid, desc="Blocked, going from S or O to M"; BBS_UM, AccessPermission:Invalid, desc="Blocked, going from S or O to M via upgrade"; BBO_UM, AccessPermission:Invalid, desc="Blocked, going from S or O to M via upgrade"; S_M, AccessPermission:Invalid, desc="Shared, issued CtoD, have not seen response yet"; O_M, AccessPermission:Invalid, desc="Shared, issued CtoD, have not seen response yet"; // BBB_S, AccessPermission:Invalid, desc="Blocked, going to S after core unblock"; BBB_M, AccessPermission:Invalid, desc="Blocked, going to M after core unblock"; BBB_E, AccessPermission:Invalid, desc="Blocked, going to E after core unblock"; VES_I, AccessPermission:Invalid, desc="TCC replacement, waiting for clean WB ack"; VM_I, AccessPermission:Invalid, desc="TCC replacement, waiting for dirty WB ack"; VO_I, AccessPermission:Invalid, desc="TCC replacement, waiting for dirty WB ack"; VO_S, AccessPermission:Invalid, desc="TCC owner replacement, waiting for dirty WB ack"; ES_I, AccessPermission:Invalid, desc="L1 replacement, waiting for clean WB ack"; MO_I, AccessPermission:Invalid, desc="L1 replacement, waiting for dirty WB ack"; I_C, AccessPermission:Invalid, desc="Invalid, waiting for WBAck from NB for canceled WB"; I_W, AccessPermission:Invalid, desc="Invalid, waiting for WBAck from NB; canceled WB raced with directory invalidation"; // Recall States BRWD_I, AccessPermission:Invalid, desc="Recalling, waiting for WBAck and Probe Data responses"; BRW_I, AccessPermission:Read_Write, desc="Recalling, waiting for WBAck"; BRD_I, AccessPermission:Invalid, desc="Recalling, waiting for Probe Data responses"; } enumeration(RequestType, desc="To communicate stats from transitions to recordStats") { DataArrayRead, desc="Read the data array"; DataArrayWrite, desc="Write the data array"; TagArrayRead, desc="Read the data array"; TagArrayWrite, desc="Write the data array"; } // EVENTS enumeration(Event, desc="TCC Directory Events") { // Upward facing events (TCCdir w.r.t. TCP/SQC and TCC behaves like NBdir behaves with TCP/SQC and L3 // Directory Recall Recall, desc="directory cache is full"; // CPU requests CPUWrite, desc="Initial req from core, sent to TCC"; NoCPUWrite, desc="Initial req from core, but non-exclusive clean data; can be discarded"; CPUWriteCancel, desc="Initial req from core, sent to TCC"; // Requests from the TCPs RdBlk, desc="RdBlk event"; RdBlkM, desc="RdBlkM event"; RdBlkS, desc="RdBlkS event"; CtoD, desc="Change to Dirty request"; // TCC writebacks VicDirty, desc="..."; VicDirtyLast, desc="..."; VicClean, desc="..."; NoVic, desc="..."; StaleVic, desc="..."; CancelWB, desc="TCC got invalidating probe, canceled WB"; // Probe Responses from TCP/SQCs CPUPrbResp, desc="Probe response from TCP/SQC"; TCCPrbResp, desc="Probe response from TCC"; ProbeAcksComplete, desc="All acks received"; ProbeAcksCompleteReissue, desc="All acks received, changing CtoD to reissue"; CoreUnblock, desc="unblock from TCP/SQC"; LastCoreUnblock, desc="Last unblock from TCP/SQC"; TCCUnblock, desc="unblock from TCC (current owner)"; TCCUnblock_Sharer, desc="unblock from TCC (a sharer, not owner)"; TCCUnblock_NotValid,desc="unblock from TCC (not valid...caused by stale writebacks)"; // Downward facing events // NB initiated NB_AckS, desc="NB Ack to TCC Request"; NB_AckE, desc="NB Ack to TCC Request"; NB_AckM, desc="NB Ack to TCC Request"; NB_AckCtoD, desc="NB Ack to TCC Request"; NB_AckWB, desc="NB Ack for clean WB"; // Incoming Probes from NB PrbInvData, desc="Invalidating probe, return dirty data"; PrbInv, desc="Invalidating probe, no need to return data"; PrbShrData, desc="Downgrading probe, return data"; } // TYPES // Entry for directory structure(Entry, desc="...", interface='AbstractCacheEntry') { State CacheState, desc="Cache state (Cache of directory entries)"; DataBlock DataBlk, desc="data for the block"; NetDest Sharers, desc="Sharers for this block"; NetDest Owner, desc="Owner of this block"; NetDest MergedSharers, desc="Read sharers who are merged on a request"; int WaitingUnblocks, desc="Number of acks we're waiting for"; } structure(TBE, desc="...") { State TBEState, desc="Transient state"; DataBlock DataBlk, desc="DataBlk"; bool Dirty, desc="Is the data dirty?"; MachineID Requestor, desc="requestor"; int NumPendingAcks, desc="num acks expected"; MachineID OriginalRequestor, desc="Original Requestor"; MachineID UntransferredOwner, desc = "Untransferred owner for an upgrade transaction"; bool UntransferredOwnerExists, desc = "1 if Untransferred owner exists for an upgrade transaction"; bool Cached, desc="data hit in Cache"; bool Shared, desc="victim hit by shared probe"; bool Upgrade, desc="An upgrade request in progress"; bool CtoD, desc="Saved sysack info"; CoherenceState CohState, desc="Saved sysack info"; MessageSizeType MessageSize, desc="Saved sysack info"; MachineID Sender, desc="sender"; } structure(TBETable, external = "yes") { TBE lookup(Addr); void allocate(Addr); void deallocate(Addr); bool isPresent(Addr); } // ** OBJECTS ** TBETable TBEs, template="", constructor="m_number_of_TBEs"; int TCC_select_low_bit, default="RubySystem::getBlockSizeBits()"; NetDest TCC_dir_subtree; NetDest temp; Tick clockEdge(); Tick cyclesToTicks(Cycles c); void set_cache_entry(AbstractCacheEntry b); void unset_cache_entry(); void set_tbe(TBE b); void unset_tbe(); MachineID mapAddressToMachine(Addr addr, MachineType mtype); bool presentOrAvail(Addr addr) { return directory.isTagPresent(addr) || directory.cacheAvail(addr); } Entry getCacheEntry(Addr addr), return_by_pointer="yes" { return static_cast(Entry, "pointer", directory.lookup(addr)); } DataBlock getDataBlock(Addr addr), return_by_ref="yes" { TBE tbe := TBEs.lookup(addr); if(is_valid(tbe)) { return tbe.DataBlk; } else { assert(false); return getCacheEntry(addr).DataBlk; } } State getState(TBE tbe, Entry cache_entry, Addr addr) { if(is_valid(tbe)) { return tbe.TBEState; } else if (is_valid(cache_entry)) { return cache_entry.CacheState; } return State:I; } void setAccessPermission(Entry cache_entry, Addr addr, State state) { if (is_valid(cache_entry)) { cache_entry.changePermission(TCCdir_State_to_permission(state)); } } AccessPermission getAccessPermission(Addr addr) { TBE tbe := TBEs.lookup(addr); if(is_valid(tbe)) { return TCCdir_State_to_permission(tbe.TBEState); } Entry cache_entry := getCacheEntry(addr); if(is_valid(cache_entry)) { return TCCdir_State_to_permission(cache_entry.CacheState); } return AccessPermission:NotPresent; } void functionalRead(Addr addr, Packet *pkt) { TBE tbe := TBEs.lookup(addr); if(is_valid(tbe)) { testAndRead(addr, tbe.DataBlk, pkt); } else { functionalMemoryRead(pkt); } } int functionalWrite(Addr addr, Packet *pkt) { int num_functional_writes := 0; TBE tbe := TBEs.lookup(addr); if(is_valid(tbe)) { num_functional_writes := num_functional_writes + testAndWrite(addr, tbe.DataBlk, pkt); } num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt); return num_functional_writes; } void setState(TBE tbe, Entry cache_entry, Addr addr, State state) { if (is_valid(tbe)) { tbe.TBEState := state; } if (is_valid(cache_entry)) { cache_entry.CacheState := state; if (state == State:S) { assert(cache_entry.Owner.count() == 0); } if (state == State:O) { assert(cache_entry.Owner.count() == 1); assert(cache_entry.Sharers.isSuperset(cache_entry.Owner) == false); } if (state == State:M) { assert(cache_entry.Owner.count() == 1); assert(cache_entry.Sharers.count() == 0); } if (state == State:E) { assert(cache_entry.Owner.count() == 0); assert(cache_entry.Sharers.count() == 1); } } } void recordRequestType(RequestType request_type, Addr addr) { if (request_type == RequestType:DataArrayRead) { directory.recordRequestType(CacheRequestType:DataArrayRead, addr); } else if (request_type == RequestType:DataArrayWrite) { directory.recordRequestType(CacheRequestType:DataArrayWrite, addr); } else if (request_type == RequestType:TagArrayRead) { directory.recordRequestType(CacheRequestType:TagArrayRead, addr); } else if (request_type == RequestType:TagArrayWrite) { directory.recordRequestType(CacheRequestType:TagArrayWrite, addr); } } bool checkResourceAvailable(RequestType request_type, Addr addr) { if (request_type == RequestType:DataArrayRead) { return directory.checkResourceAvailable(CacheResourceType:DataArray, addr); } else if (request_type == RequestType:DataArrayWrite) { return directory.checkResourceAvailable(CacheResourceType:DataArray, addr); } else if (request_type == RequestType:TagArrayRead) { return directory.checkResourceAvailable(CacheResourceType:TagArray, addr); } else if (request_type == RequestType:TagArrayWrite) { return directory.checkResourceAvailable(CacheResourceType:TagArray, addr); } else { error("Invalid RequestType type in checkResourceAvailable"); return true; } } // ** OUT_PORTS ** // Three classes of ports // Class 1: downward facing network links to NB out_port(requestToNB_out, CPURequestMsg, requestToNB); out_port(responseToNB_out, ResponseMsg, responseToNB); out_port(unblockToNB_out, UnblockMsg, unblockToNB); // Class 2: upward facing ports to GPU cores out_port(probeToCore_out, TDProbeRequestMsg, probeToCore); out_port(responseToCore_out, ResponseMsg, responseToCore); // Class 3: sideward facing ports (on "wirebuffer" links) to TCC out_port(w_requestTCC_out, CPURequestMsg, w_reqToTCC); out_port(w_probeTCC_out, NBProbeRequestMsg, w_probeToTCC); out_port(w_respTCC_out, ResponseMsg, w_respToTCC); // local trigger port out_port(triggerQueue_out, TriggerMsg, triggerQueue); // // request queue going to NB // // ** IN_PORTS ** // Trigger Queue in_port(triggerQueue_in, TriggerMsg, triggerQueue, rank=8) { if (triggerQueue_in.isReady(clockEdge())) { peek(triggerQueue_in, TriggerMsg) { TBE tbe := TBEs.lookup(in_msg.addr); assert(is_valid(tbe)); Entry cache_entry := getCacheEntry(in_msg.addr); if ((in_msg.Type == TriggerType:AcksComplete) && (tbe.Upgrade == false)) { trigger(Event:ProbeAcksComplete, in_msg.addr, cache_entry, tbe); } else if ((in_msg.Type == TriggerType:AcksComplete) && (tbe.Upgrade == true)) { trigger(Event:ProbeAcksCompleteReissue, in_msg.addr, cache_entry, tbe); } } } } // Unblock Networks (TCCdir can receive unblocks from TCC, TCPs) // Port on first (of three) wire buffers from TCC in_port(w_TCCUnblock_in, UnblockMsg, w_TCCUnblockToTCCDir, rank=7) { if (w_TCCUnblock_in.isReady(clockEdge())) { peek(w_TCCUnblock_in, UnblockMsg) { TBE tbe := TBEs.lookup(in_msg.addr); Entry cache_entry := getCacheEntry(in_msg.addr); if (in_msg.currentOwner) { trigger(Event:TCCUnblock, in_msg.addr, cache_entry, tbe); } else if (in_msg.valid) { trigger(Event:TCCUnblock_Sharer, in_msg.addr, cache_entry, tbe); } else { trigger(Event:TCCUnblock_NotValid, in_msg.addr, cache_entry, tbe); } } } } in_port(unblockNetwork_in, UnblockMsg, unblockFromTCP, rank=6) { if (unblockNetwork_in.isReady(clockEdge())) { peek(unblockNetwork_in, UnblockMsg) { TBE tbe := TBEs.lookup(in_msg.addr); Entry cache_entry := getCacheEntry(in_msg.addr); if(cache_entry.WaitingUnblocks == 1) { trigger(Event:LastCoreUnblock, in_msg.addr, cache_entry, tbe); } else { trigger(Event:CoreUnblock, in_msg.addr, cache_entry, tbe); } } } } //Responses from TCC, and Cores // Port on second (of three) wire buffers from TCC in_port(w_TCCResponse_in, ResponseMsg, w_respToTCCDir, rank=5) { if (w_TCCResponse_in.isReady(clockEdge())) { peek(w_TCCResponse_in, ResponseMsg) { TBE tbe := TBEs.lookup(in_msg.addr); Entry cache_entry := getCacheEntry(in_msg.addr); if (in_msg.Type == CoherenceResponseType:CPUPrbResp) { trigger(Event:TCCPrbResp, in_msg.addr, cache_entry, tbe); } } } } in_port(responseNetwork_in, ResponseMsg, responseFromTCP, rank=4) { if (responseNetwork_in.isReady(clockEdge())) { peek(responseNetwork_in, ResponseMsg) { TBE tbe := TBEs.lookup(in_msg.addr); Entry cache_entry := getCacheEntry(in_msg.addr); if (in_msg.Type == CoherenceResponseType:CPUPrbResp) { trigger(Event:CPUPrbResp, in_msg.addr, cache_entry, tbe); } } } } // Port on third (of three) wire buffers from TCC in_port(w_TCCRequest_in, CPURequestMsg, w_reqToTCCDir, rank=3) { if(w_TCCRequest_in.isReady(clockEdge())) { peek(w_TCCRequest_in, CPURequestMsg) { TBE tbe := TBEs.lookup(in_msg.addr); Entry cache_entry := getCacheEntry(in_msg.addr); if (in_msg.Type == CoherenceRequestType:WrCancel) { trigger(Event:CancelWB, in_msg.addr, cache_entry, tbe); } else if (in_msg.Type == CoherenceRequestType:VicDirty) { if (is_valid(cache_entry) && cache_entry.Owner.isElement(in_msg.Requestor)) { // if modified, or owner with no other sharers if ((cache_entry.CacheState == State:M) || (cache_entry.Sharers.count() == 0)) { assert(cache_entry.Owner.count()==1); trigger(Event:VicDirtyLast, in_msg.addr, cache_entry, tbe); } else { trigger(Event:VicDirty, in_msg.addr, cache_entry, tbe); } } else { trigger(Event:StaleVic, in_msg.addr, cache_entry, tbe); } } else { if (in_msg.Type == CoherenceRequestType:VicClean) { if (is_valid(cache_entry) && cache_entry.Sharers.isElement(in_msg.Requestor)) { if (cache_entry.Sharers.count() == 1) { // Last copy, victimize to L3 trigger(Event:VicClean, in_msg.addr, cache_entry, tbe); } else { // Either not the last copy or stall. No need to victimmize // remove sharer from sharer list assert(cache_entry.Sharers.count() > 1); trigger(Event:NoVic, in_msg.addr, cache_entry, tbe); } } else { trigger(Event:StaleVic, in_msg.addr, cache_entry, tbe); } } } } } } in_port(responseFromNB_in, ResponseMsg, responseFromNB, rank=2) { if (responseFromNB_in.isReady(clockEdge())) { peek(responseFromNB_in, ResponseMsg, block_on="addr") { TBE tbe := TBEs.lookup(in_msg.addr); Entry cache_entry := getCacheEntry(in_msg.addr); if (in_msg.Type == CoherenceResponseType:NBSysResp) { if (in_msg.State == CoherenceState:Modified) { if (in_msg.CtoD) { trigger(Event:NB_AckCtoD, in_msg.addr, cache_entry, tbe); } else { trigger(Event:NB_AckM, in_msg.addr, cache_entry, tbe); } } else if (in_msg.State == CoherenceState:Shared) { trigger(Event:NB_AckS, in_msg.addr, cache_entry, tbe); } else if (in_msg.State == CoherenceState:Exclusive) { trigger(Event:NB_AckE, in_msg.addr, cache_entry, tbe); } } else if (in_msg.Type == CoherenceResponseType:NBSysWBAck) { trigger(Event:NB_AckWB, in_msg.addr, cache_entry, tbe); } else { error("Unexpected Response Message to Core"); } } } } // Finally handling incoming requests (from TCP) and probes (from NB). in_port(probeNetwork_in, NBProbeRequestMsg, probeFromNB, rank=1) { if (probeNetwork_in.isReady(clockEdge())) { peek(probeNetwork_in, NBProbeRequestMsg) { DPRINTF(RubySlicc, "%s\n", in_msg); DPRINTF(RubySlicc, "machineID: %s\n", machineID); Entry cache_entry := getCacheEntry(in_msg.addr); TBE tbe := TBEs.lookup(in_msg.addr); if (in_msg.Type == ProbeRequestType:PrbInv) { if (in_msg.ReturnData) { trigger(Event:PrbInvData, in_msg.addr, cache_entry, tbe); } else { trigger(Event:PrbInv, in_msg.addr, cache_entry, tbe); } } else if (in_msg.Type == ProbeRequestType:PrbDowngrade) { assert(in_msg.ReturnData); trigger(Event:PrbShrData, in_msg.addr, cache_entry, tbe); } } } } in_port(coreRequestNetwork_in, CPURequestMsg, requestFromTCP, rank=0) { if (coreRequestNetwork_in.isReady(clockEdge())) { peek(coreRequestNetwork_in, CPURequestMsg) { TBE tbe := TBEs.lookup(in_msg.addr); Entry cache_entry := getCacheEntry(in_msg.addr); if (presentOrAvail(in_msg.addr)) { if (in_msg.Type == CoherenceRequestType:VicDirty) { trigger(Event:CPUWrite, in_msg.addr, cache_entry, tbe); } else if (in_msg.Type == CoherenceRequestType:VicClean) { if (is_valid(cache_entry) && cache_entry.Owner.isElement(in_msg.Requestor)) { trigger(Event:CPUWrite, in_msg.addr, cache_entry, tbe); } else if(is_valid(cache_entry) && (cache_entry.Sharers.count() + cache_entry.Owner.count() ) >1) { trigger(Event:NoCPUWrite, in_msg.addr, cache_entry, tbe); } else { trigger(Event:CPUWrite, in_msg.addr, cache_entry, tbe); } } else if (in_msg.Type == CoherenceRequestType:RdBlk) { trigger(Event:RdBlk, in_msg.addr, cache_entry, tbe); } else if (in_msg.Type == CoherenceRequestType:RdBlkS) { trigger(Event:RdBlkS, in_msg.addr, cache_entry, tbe); } else if (in_msg.Type == CoherenceRequestType:RdBlkM) { trigger(Event:RdBlkM, in_msg.addr, cache_entry, tbe); } else if (in_msg.Type == CoherenceRequestType:WrCancel) { trigger(Event:CPUWriteCancel, in_msg.addr, cache_entry, tbe); } } else { // All requests require a directory entry Addr victim := directory.cacheProbe(in_msg.addr); trigger(Event:Recall, victim, getCacheEntry(victim), TBEs.lookup(victim)); } } } } // Actions //Downward facing actions action(c_clearOwner, "c", desc="Clear the owner field") { cache_entry.Owner.clear(); } action(rS_removeRequesterFromSharers, "rS", desc="Remove unblocker from sharer list") { peek(unblockNetwork_in, UnblockMsg) { cache_entry.Sharers.remove(in_msg.Sender); } } action(rT_removeTCCFromSharers, "rT", desc="Remove TCC from sharer list") { peek(w_TCCRequest_in, CPURequestMsg) { cache_entry.Sharers.remove(in_msg.Requestor); } } action(rO_removeOriginalRequestorFromSharers, "rO", desc="Remove replacing core from sharer list") { peek(coreRequestNetwork_in, CPURequestMsg) { cache_entry.Sharers.remove(in_msg.Requestor); } } action(rC_removeCoreFromSharers, "rC", desc="Remove replacing core from sharer list") { peek(coreRequestNetwork_in, CPURequestMsg) { cache_entry.Sharers.remove(in_msg.Requestor); } } action(rCo_removeCoreFromOwner, "rCo", desc="Remove replacing core from sharer list") { // Note that under some cases this action will try to remove a stale owner peek(coreRequestNetwork_in, CPURequestMsg) { cache_entry.Owner.remove(in_msg.Requestor); } } action(rR_removeResponderFromSharers, "rR", desc="Remove responder from sharer list") { peek(responseNetwork_in, ResponseMsg) { cache_entry.Sharers.remove(in_msg.Sender); } } action(nC_sendNullWBAckToCore, "nC", desc = "send a null WB Ack to release core") { peek(coreRequestNetwork_in, CPURequestMsg) { enqueue(responseToCore_out, ResponseMsg, 1) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:TDSysWBNack; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.MessageSize := in_msg.MessageSize; } } } action(nT_sendNullWBAckToTCC, "nT", desc = "send a null WB Ack to release TCC") { peek(w_TCCRequest_in, CPURequestMsg) { enqueue(w_respTCC_out, ResponseMsg, 1) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:TDSysWBAck; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.MessageSize := in_msg.MessageSize; } } } action(eto_moveExSharerToOwner, "eto", desc="move the current exclusive sharer to owner") { assert(cache_entry.Sharers.count() == 1); assert(cache_entry.Owner.count() == 0); cache_entry.Owner := cache_entry.Sharers; cache_entry.Sharers.clear(); APPEND_TRANSITION_COMMENT(" new owner "); APPEND_TRANSITION_COMMENT(cache_entry.Owner); } action(aT_addTCCToSharers, "aT", desc="Add TCC to sharer list") { peek(w_TCCUnblock_in, UnblockMsg) { cache_entry.Sharers.add(in_msg.Sender); } } action(as_addToSharers, "as", desc="Add unblocker to sharer list") { peek(unblockNetwork_in, UnblockMsg) { cache_entry.Sharers.add(in_msg.Sender); } } action(c_moveOwnerToSharer, "cc", desc="Move owner to sharers") { cache_entry.Sharers.addNetDest(cache_entry.Owner); cache_entry.Owner.clear(); } action(cc_clearSharers, "\c", desc="Clear the sharers field") { cache_entry.Sharers.clear(); } action(e_ownerIsUnblocker, "e", desc="The owner is now the unblocker") { peek(unblockNetwork_in, UnblockMsg) { cache_entry.Owner.clear(); cache_entry.Owner.add(in_msg.Sender); APPEND_TRANSITION_COMMENT(" tcp_ub owner "); APPEND_TRANSITION_COMMENT(cache_entry.Owner); } } action(eT_ownerIsUnblocker, "eT", desc="TCC (unblocker) is now owner") { peek(w_TCCUnblock_in, UnblockMsg) { cache_entry.Owner.clear(); cache_entry.Owner.add(in_msg.Sender); APPEND_TRANSITION_COMMENT(" tcc_ub owner "); APPEND_TRANSITION_COMMENT(cache_entry.Owner); } } action(ctr_copyTCCResponseToTBE, "ctr", desc="Copy TCC probe response data to TBE") { peek(w_TCCResponse_in, ResponseMsg) { // Overwrite data if tbe does not hold dirty data. Stop once it is dirty. if(tbe.Dirty == false) { tbe.DataBlk := in_msg.DataBlk; tbe.Dirty := in_msg.Dirty; tbe.Sender := in_msg.Sender; } DPRINTF(RubySlicc, "%s\n", (tbe.DataBlk)); } } action(ccr_copyCoreResponseToTBE, "ccr", desc="Copy core probe response data to TBE") { peek(responseNetwork_in, ResponseMsg) { // Overwrite data if tbe does not hold dirty data. Stop once it is dirty. if(tbe.Dirty == false) { tbe.DataBlk := in_msg.DataBlk; tbe.Dirty := in_msg.Dirty; if(tbe.Sender == machineID) { tbe.Sender := in_msg.Sender; } } DPRINTF(RubySlicc, "%s\n", (tbe.DataBlk)); } } action(cd_clearDirtyBitTBE, "cd", desc="Clear Dirty bit in TBE") { tbe.Dirty := false; } action(n_issueRdBlk, "n-", desc="Issue RdBlk") { enqueue(requestToNB_out, CPURequestMsg, issue_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:RdBlk; out_msg.Requestor := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := MessageSizeType:Request_Control; } } action(nS_issueRdBlkS, "nS", desc="Issue RdBlkS") { enqueue(requestToNB_out, CPURequestMsg, issue_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:RdBlkS; out_msg.Requestor := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := MessageSizeType:Request_Control; } } action(nM_issueRdBlkM, "nM", desc="Issue RdBlkM") { enqueue(requestToNB_out, CPURequestMsg, issue_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:RdBlkM; out_msg.Requestor := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := MessageSizeType:Request_Control; } } action(rU_rememberUpgrade, "rU", desc="Remember that this was an upgrade") { tbe.Upgrade := true; } action(ruo_rememberUntransferredOwner, "ruo", desc="Remember the untransferred owner") { peek(responseNetwork_in, ResponseMsg) { if(in_msg.UntransferredOwner == true) { tbe.UntransferredOwner := in_msg.Sender; tbe.UntransferredOwnerExists := true; } DPRINTF(RubySlicc, "%s\n", (in_msg)); } } action(ruoT_rememberUntransferredOwnerTCC, "ruoT", desc="Remember the untransferred owner") { peek(w_TCCResponse_in, ResponseMsg) { if(in_msg.UntransferredOwner == true) { tbe.UntransferredOwner := in_msg.Sender; tbe.UntransferredOwnerExists := true; } DPRINTF(RubySlicc, "%s\n", (in_msg)); } } action(vd_victim, "vd", desc="Victimize M/O Data") { enqueue(requestToNB_out, CPURequestMsg, issue_latency) { out_msg.addr := address; out_msg.Requestor := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := MessageSizeType:Request_Control; out_msg.Type := CoherenceRequestType:VicDirty; if (cache_entry.CacheState == State:O) { out_msg.Shared := true; } else { out_msg.Shared := false; } out_msg.Dirty := true; } } action(vc_victim, "vc", desc="Victimize E/S Data") { enqueue(requestToNB_out, CPURequestMsg, issue_latency) { out_msg.addr := address; out_msg.Requestor := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := MessageSizeType:Request_Control; out_msg.Type := CoherenceRequestType:VicClean; if (cache_entry.CacheState == State:S) { out_msg.Shared := true; } else { out_msg.Shared := false; } out_msg.Dirty := false; } } action(sT_sendRequestToTCC, "sT", desc="send request to TCC") { peek(coreRequestNetwork_in, CPURequestMsg) { enqueue(w_requestTCC_out, CPURequestMsg, 1) { out_msg.addr := address; out_msg.Type := in_msg.Type; out_msg.Requestor := in_msg.Requestor; out_msg.DataBlk := in_msg.DataBlk; out_msg.Destination.add(mapAddressToRange(address,MachineType:TCC, TCC_select_low_bit, TCC_select_num_bits)); out_msg.Shared := in_msg.Shared; out_msg.MessageSize := in_msg.MessageSize; } APPEND_TRANSITION_COMMENT(" requestor "); APPEND_TRANSITION_COMMENT(in_msg.Requestor); } } action(sc_probeShrCoreData, "sc", desc="probe shared cores, return data") { MachineID tcc := mapAddressToRange(address,MachineType:TCC, TCC_select_low_bit, TCC_select_num_bits); temp := cache_entry.Sharers; temp.addNetDest(cache_entry.Owner); if (temp.isElement(tcc)) { temp.remove(tcc); } if (temp.count() > 0) { enqueue(probeToCore_out, TDProbeRequestMsg, response_latency) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbDowngrade; out_msg.ReturnData := true; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination := temp; tbe.NumPendingAcks := temp.count(); if(cache_entry.CacheState == State:M) { assert(tbe.NumPendingAcks == 1); } DPRINTF(RubySlicc, "%s\n", (out_msg)); } } } action(ls2_probeShrL2Data, "ls2", desc="local probe downgrade L2, return data") { MachineID tcc := mapAddressToRange(address,MachineType:TCC, TCC_select_low_bit, TCC_select_num_bits); if ((cache_entry.Sharers.isElement(tcc)) || (cache_entry.Owner.isElement(tcc))) { enqueue(w_probeTCC_out, TDProbeRequestMsg, 1) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbDowngrade; out_msg.ReturnData := true; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination.add(tcc); tbe.NumPendingAcks := tbe.NumPendingAcks + 1; DPRINTF(RubySlicc, "%s\n", out_msg); } } } action(s2_probeShrL2Data, "s2", desc="probe shared L2, return data") { MachineID tcc := mapAddressToRange(address,MachineType:TCC, TCC_select_low_bit, TCC_select_num_bits); if ((cache_entry.Sharers.isElement(tcc)) || (cache_entry.Owner.isElement(tcc))) { enqueue(w_probeTCC_out, TDProbeRequestMsg, 1) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbDowngrade; out_msg.ReturnData := true; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination.add(tcc); tbe.NumPendingAcks := tbe.NumPendingAcks + 1; DPRINTF(RubySlicc, "%s\n", out_msg); } } } action(ldc_probeInvCoreData, "ldc", desc="local probe to inv cores, return data") { MachineID tcc := mapAddressToRange(address,MachineType:TCC, TCC_select_low_bit, TCC_select_num_bits); peek(coreRequestNetwork_in, CPURequestMsg) { NetDest dest:= cache_entry.Sharers; dest.addNetDest(cache_entry.Owner); if(dest.isElement(tcc)){ dest.remove(tcc); } dest.remove(in_msg.Requestor); tbe.NumPendingAcks := dest.count(); if (dest.count()>0){ enqueue(probeToCore_out, TDProbeRequestMsg, response_latency) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbInv; out_msg.ReturnData := true; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination.addNetDest(dest); if(cache_entry.CacheState == State:M) { assert(tbe.NumPendingAcks == 1); } DPRINTF(RubySlicc, "%s\n", (out_msg)); } } } } action(ld2_probeInvL2Data, "ld2", desc="local probe inv L2, return data") { MachineID tcc := mapAddressToRange(address,MachineType:TCC, TCC_select_low_bit, TCC_select_num_bits); if ((cache_entry.Sharers.isElement(tcc)) || (cache_entry.Owner.isElement(tcc))) { enqueue(w_probeTCC_out, TDProbeRequestMsg, 1) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbInv; out_msg.ReturnData := true; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination.add(tcc); tbe.NumPendingAcks := tbe.NumPendingAcks + 1; DPRINTF(RubySlicc, "%s\n", out_msg); } } } action(dc_probeInvCoreData, "dc", desc="probe inv cores + TCC, return data") { MachineID tcc := mapAddressToRange(address,MachineType:TCC, TCC_select_low_bit, TCC_select_num_bits); enqueue(probeToCore_out, TDProbeRequestMsg, response_latency) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbInv; out_msg.ReturnData := true; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination.addNetDest(cache_entry.Sharers); out_msg.Destination.addNetDest(cache_entry.Owner); tbe.NumPendingAcks := cache_entry.Sharers.count() + cache_entry.Owner.count(); if(cache_entry.CacheState == State:M) { assert(tbe.NumPendingAcks == 1); } if (out_msg.Destination.isElement(tcc)) { out_msg.Destination.remove(tcc); tbe.NumPendingAcks := tbe.NumPendingAcks - 1; } DPRINTF(RubySlicc, "%s\n", (out_msg)); } } action(d2_probeInvL2Data, "d2", desc="probe inv L2, return data") { MachineID tcc := mapAddressToRange(address,MachineType:TCC, TCC_select_low_bit, TCC_select_num_bits); if ((cache_entry.Sharers.isElement(tcc)) || (cache_entry.Owner.isElement(tcc))) { enqueue(w_probeTCC_out, TDProbeRequestMsg, 1) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbInv; out_msg.ReturnData := true; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination.add(tcc); tbe.NumPendingAcks := tbe.NumPendingAcks + 1; DPRINTF(RubySlicc, "%s\n", out_msg); } } } action(lpc_probeInvCore, "lpc", desc="local probe inv cores, no data") { peek(coreRequestNetwork_in, CPURequestMsg) { TCC_dir_subtree.broadcast(MachineType:TCP); TCC_dir_subtree.broadcast(MachineType:SQC); temp := cache_entry.Sharers; temp := temp.OR(cache_entry.Owner); TCC_dir_subtree := TCC_dir_subtree.AND(temp); tbe.NumPendingAcks := TCC_dir_subtree.count(); if(cache_entry.CacheState == State:M) { assert(tbe.NumPendingAcks == 1); } if(TCC_dir_subtree.isElement(in_msg.Requestor)) { TCC_dir_subtree.remove(in_msg.Requestor); tbe.NumPendingAcks := tbe.NumPendingAcks - 1; } if(TCC_dir_subtree.count() > 0) { enqueue(probeToCore_out, TDProbeRequestMsg, response_latency) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbInv; out_msg.ReturnData := false; out_msg.MessageSize := MessageSizeType:Control; out_msg.localCtoD := true; out_msg.Destination.addNetDest(TCC_dir_subtree); DPRINTF(RubySlicc, "%s\n", (out_msg)); } } } } action(ipc_probeInvCore, "ipc", desc="probe inv cores, no data") { TCC_dir_subtree.broadcast(MachineType:TCP); TCC_dir_subtree.broadcast(MachineType:SQC); temp := cache_entry.Sharers; temp := temp.OR(cache_entry.Owner); TCC_dir_subtree := TCC_dir_subtree.AND(temp); tbe.NumPendingAcks := TCC_dir_subtree.count(); if(TCC_dir_subtree.count() > 0) { enqueue(probeToCore_out, TDProbeRequestMsg, response_latency) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbInv; out_msg.ReturnData := false; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination.addNetDest(TCC_dir_subtree); if(cache_entry.CacheState == State:M) { assert(tbe.NumPendingAcks == 1); } DPRINTF(RubySlicc, "%s\n", (out_msg)); } } } action(i2_probeInvL2, "i2", desc="probe inv L2, no data") { MachineID tcc := mapAddressToRange(address,MachineType:TCC, TCC_select_low_bit, TCC_select_num_bits); if ((cache_entry.Sharers.isElement(tcc)) || (cache_entry.Owner.isElement(tcc))) { enqueue(w_probeTCC_out, TDProbeRequestMsg, 1) { tbe.NumPendingAcks := tbe.NumPendingAcks + 1; out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbInv; out_msg.ReturnData := false; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination.add(tcc); DPRINTF(RubySlicc, "%s\n", out_msg); } } } action(pi_sendProbeResponseInv, "pi", desc="send probe ack inv, no data") { enqueue(responseToNB_out, ResponseMsg, issue_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUPrbResp; // TCC, L3 respond in same way to probes out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.Dirty := false; out_msg.Hit := false; out_msg.Ntsl := true; out_msg.State := CoherenceState:NA; out_msg.MessageSize := MessageSizeType:Response_Control; } } action(pim_sendProbeResponseInvMs, "pim", desc="send probe ack inv, no data") { enqueue(responseToNB_out, ResponseMsg, issue_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUPrbResp; // L3 and TCC respond in same way to probes out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.Dirty := false; out_msg.Ntsl := true; out_msg.Hit := false; out_msg.State := CoherenceState:NA; out_msg.MessageSize := MessageSizeType:Response_Control; } } action(prm_sendProbeResponseMiss, "prm", desc="send probe ack PrbShrData, no data") { enqueue(responseToNB_out, ResponseMsg, issue_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUPrbResp; // L3 and TCC respond in same way to probes out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.Dirty := false; // only true if sending back data i think out_msg.Hit := false; out_msg.Ntsl := false; out_msg.State := CoherenceState:NA; out_msg.MessageSize := MessageSizeType:Response_Control; } } action(pd_sendProbeResponseData, "pd", desc="send probe ack, with data") { enqueue(responseToNB_out, ResponseMsg, issue_latency) { assert(is_valid(cache_entry) || is_valid(tbe)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUPrbResp; out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.DataBlk := getDataBlock(address); if (is_valid(tbe)) { out_msg.Dirty := tbe.Dirty; } out_msg.Hit := true; out_msg.State := CoherenceState:NA; out_msg.MessageSize := MessageSizeType:Response_Data; } } action(pdm_sendProbeResponseDataMs, "pdm", desc="send probe ack, with data") { enqueue(responseToNB_out, ResponseMsg, issue_latency) { assert(is_valid(cache_entry) || is_valid(tbe)); assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUPrbResp; out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.DataBlk := getDataBlock(address); if (is_valid(tbe)) { out_msg.Dirty := tbe.Dirty; } out_msg.Hit := true; out_msg.State := CoherenceState:NA; out_msg.MessageSize := MessageSizeType:Response_Data; } } action(mc_cancelWB, "mc", desc="send writeback cancel to NB directory") { enqueue(requestToNB_out, CPURequestMsg, issue_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:WrCancel; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.Requestor := machineID; out_msg.MessageSize := MessageSizeType:Request_Control; } } action(sCS_sendCollectiveResponseS, "sCS", desc="send shared response to all merged TCP/SQC") { enqueue(responseToCore_out, ResponseMsg, 1) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:TDSysResp; out_msg.Sender := tbe.Sender; out_msg.DataBlk := tbe.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; out_msg.CtoD := false; out_msg.State := CoherenceState:Shared; out_msg.Destination.addNetDest(cache_entry.MergedSharers); out_msg.Shared := tbe.Shared; out_msg.Dirty := tbe.Dirty; DPRINTF(RubySlicc, "%s\n", out_msg); } } action(sS_sendResponseS, "sS", desc="send shared response to TCP/SQC") { enqueue(responseToCore_out, ResponseMsg, 1) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:TDSysResp; out_msg.Sender := tbe.Sender; out_msg.DataBlk := tbe.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; out_msg.CtoD := false; out_msg.State := CoherenceState:Shared; out_msg.Destination.add(tbe.OriginalRequestor); out_msg.Shared := tbe.Shared; out_msg.Dirty := tbe.Dirty; DPRINTF(RubySlicc, "%s\n", out_msg); } } action(sM_sendResponseM, "sM", desc="send response to TCP/SQC") { enqueue(responseToCore_out, ResponseMsg, 1) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:TDSysResp; out_msg.Sender := tbe.Sender; out_msg.DataBlk := tbe.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; out_msg.CtoD := false; out_msg.State := CoherenceState:Modified; out_msg.Destination.add(tbe.OriginalRequestor); out_msg.Shared := tbe.Shared; out_msg.Dirty := tbe.Dirty; DPRINTF(RubySlicc, "%s\n", out_msg); } } action(fw2_forwardWBAck, "fw2", desc="forward WBAck to TCC") { peek(responseFromNB_in, ResponseMsg) { if(tbe.OriginalRequestor != machineID) { enqueue(w_respTCC_out, ResponseMsg, 1) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:TDSysWBAck; out_msg.Sender := machineID; //out_msg.DataBlk := tbe.DataBlk; out_msg.Destination.add(tbe.OriginalRequestor); out_msg.MessageSize := in_msg.MessageSize; } } } } action(sa_saveSysAck, "sa", desc="Save SysAck ") { peek(responseFromNB_in, ResponseMsg) { tbe.Dirty := in_msg.Dirty; if (tbe.Dirty == false) { tbe.DataBlk := in_msg.DataBlk; } else { tbe.DataBlk := tbe.DataBlk; } tbe.CtoD := in_msg.CtoD; tbe.CohState := in_msg.State; tbe.Shared := in_msg.Shared; tbe.MessageSize := in_msg.MessageSize; } } action(fsa_forwardSavedAck, "fsa", desc="forward saved SysAck to TCP or SQC") { enqueue(responseToCore_out, ResponseMsg, 1) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:TDSysResp; out_msg.Sender := machineID; if (tbe.Dirty == false) { out_msg.DataBlk := tbe.DataBlk; } else { out_msg.DataBlk := tbe.DataBlk; } out_msg.CtoD := tbe.CtoD; out_msg.State := tbe.CohState; out_msg.Destination.add(tbe.OriginalRequestor); out_msg.Shared := tbe.Shared; out_msg.MessageSize := tbe.MessageSize; out_msg.Dirty := tbe.Dirty; out_msg.Sender := tbe.Sender; } } action(fa_forwardSysAck, "fa", desc="forward SysAck to TCP or SQC") { peek(responseFromNB_in, ResponseMsg) { enqueue(responseToCore_out, ResponseMsg, 1) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:TDSysResp; out_msg.Sender := machineID; if (tbe.Dirty == false) { out_msg.DataBlk := in_msg.DataBlk; tbe.Sender := machineID; } else { out_msg.DataBlk := tbe.DataBlk; } out_msg.CtoD := in_msg.CtoD; out_msg.State := in_msg.State; out_msg.Destination.add(tbe.OriginalRequestor); out_msg.Shared := in_msg.Shared; out_msg.MessageSize := in_msg.MessageSize; out_msg.Dirty := in_msg.Dirty; out_msg.Sender := tbe.Sender; DPRINTF(RubySlicc, "%s\n", (out_msg.DataBlk)); } } } action(pso_probeSharedDataOwner, "pso", desc="probe shared data at owner") { MachineID tcc := mapAddressToRange(address,MachineType:TCC, TCC_select_low_bit, TCC_select_num_bits); if (cache_entry.Owner.isElement(tcc)) { enqueue(w_probeTCC_out, TDProbeRequestMsg, 1) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbDowngrade; out_msg.ReturnData := true; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination.add(tcc); DPRINTF(RubySlicc, "%s\n", out_msg); } } else { // i.e., owner is a core enqueue(probeToCore_out, TDProbeRequestMsg, response_latency) { out_msg.addr := address; out_msg.Type := ProbeRequestType:PrbDowngrade; out_msg.ReturnData := true; out_msg.MessageSize := MessageSizeType:Control; out_msg.Destination.addNetDest(cache_entry.Owner); DPRINTF(RubySlicc, "%s\n", out_msg); } } tbe.NumPendingAcks := 1; } action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") { coreRequestNetwork_in.dequeue(clockEdge()); } action(j_popIncomingUnblockQueue, "j", desc="Pop incoming unblock queue") { unblockNetwork_in.dequeue(clockEdge()); } action(pk_popResponseQueue, "pk", desc="Pop response queue") { responseNetwork_in.dequeue(clockEdge()); } action(pp_popProbeQueue, "pp", desc="Pop incoming probe queue") { probeNetwork_in.dequeue(clockEdge()); } action(pR_popResponseFromNBQueue, "pR", desc="Pop incoming Response queue From NB") { responseFromNB_in.dequeue(clockEdge()); } action(pt_popTriggerQueue, "pt", desc="pop trigger queue") { triggerQueue_in.dequeue(clockEdge()); } action(pl_popTCCRequestQueue, "pl", desc="pop TCC request queue") { w_TCCRequest_in.dequeue(clockEdge()); } action(plr_popTCCResponseQueue, "plr", desc="pop TCC response queue") { w_TCCResponse_in.dequeue(clockEdge()); } action(plu_popTCCUnblockQueue, "plu", desc="pop TCC unblock queue") { w_TCCUnblock_in.dequeue(clockEdge()); } action(m_addUnlockerToSharers, "m", desc="Add the unlocker to the sharer list") { peek(unblockNetwork_in, UnblockMsg) { cache_entry.Sharers.add(in_msg.Sender); cache_entry.MergedSharers.remove(in_msg.Sender); assert(cache_entry.WaitingUnblocks >= 0); cache_entry.WaitingUnblocks := cache_entry.WaitingUnblocks - 1; } } action(q_addOutstandingMergedSharer, "q", desc="Increment outstanding requests") { peek(coreRequestNetwork_in, CPURequestMsg) { cache_entry.MergedSharers.add(in_msg.Requestor); cache_entry.WaitingUnblocks := cache_entry.WaitingUnblocks + 1; } } action(uu_sendUnblock, "uu", desc="state changed, unblock") { enqueue(unblockToNB_out, UnblockMsg, issue_latency) { out_msg.addr := address; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := MessageSizeType:Unblock_Control; DPRINTF(RubySlicc, "%s\n", out_msg); } } action(zz_recycleRequest, "\z", desc="Recycle the request queue") { coreRequestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(yy_recycleTCCRequestQueue, "yy", desc="recycle yy request queue") { w_TCCRequest_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(xz_recycleResponseQueue, "xz", desc="recycle response queue") { responseNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(xx_recycleTCCResponseQueue, "xx", desc="recycle TCC response queue") { w_TCCResponse_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(vv_recycleTCCUnblockQueue, "vv", desc="Recycle the probe request queue") { w_TCCUnblock_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(xy_recycleUnblockQueue, "xy", desc="Recycle the probe request queue") { w_TCCUnblock_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(ww_recycleProbeRequest, "ww", desc="Recycle the probe request queue") { probeNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(x_decrementAcks, "x", desc="decrement Acks pending") { tbe.NumPendingAcks := tbe.NumPendingAcks - 1; } action(o_checkForAckCompletion, "o", desc="check for ack completion") { if (tbe.NumPendingAcks == 0) { enqueue(triggerQueue_out, TriggerMsg, 1) { out_msg.addr := address; out_msg.Type := TriggerType:AcksComplete; } } APPEND_TRANSITION_COMMENT(" tbe acks "); APPEND_TRANSITION_COMMENT(tbe.NumPendingAcks); } action(tp_allocateTBE, "tp", desc="allocate TBE Entry for upward transactions") { check_allocate(TBEs); peek(probeNetwork_in, NBProbeRequestMsg) { TBEs.allocate(address); set_tbe(TBEs.lookup(address)); tbe.Dirty := false; tbe.NumPendingAcks := 0; tbe.UntransferredOwnerExists := false; } } action(tv_allocateTBE, "tv", desc="allocate TBE Entry for TCC transactions") { check_allocate(TBEs); peek(w_TCCRequest_in, CPURequestMsg) { TBEs.allocate(address); set_tbe(TBEs.lookup(address)); tbe.DataBlk := in_msg.DataBlk; // Data only for WBs tbe.Dirty := false; tbe.OriginalRequestor := in_msg.Requestor; tbe.NumPendingAcks := 0; tbe.UntransferredOwnerExists := false; } } action(t_allocateTBE, "t", desc="allocate TBE Entry") { check_allocate(TBEs);//check whether resources are full peek(coreRequestNetwork_in, CPURequestMsg) { TBEs.allocate(address); set_tbe(TBEs.lookup(address)); tbe.DataBlk := cache_entry.DataBlk; // Data only for WBs tbe.Dirty := false; tbe.Upgrade := false; tbe.OriginalRequestor := in_msg.Requestor; tbe.NumPendingAcks := 0; tbe.UntransferredOwnerExists := false; tbe.Sender := machineID; } } action(tr_allocateTBE, "tr", desc="allocate TBE Entry for recall") { check_allocate(TBEs);//check whether resources are full TBEs.allocate(address); set_tbe(TBEs.lookup(address)); tbe.DataBlk := cache_entry.DataBlk; // Data only for WBs tbe.Dirty := false; tbe.Upgrade := false; tbe.OriginalRequestor := machineID; //Recall request, Self initiated tbe.NumPendingAcks := 0; tbe.UntransferredOwnerExists := false; } action(dt_deallocateTBE, "dt", desc="Deallocate TBE entry") { TBEs.deallocate(address); unset_tbe(); } action(d_allocateDir, "d", desc="allocate Directory Cache") { if (is_invalid(cache_entry)) { set_cache_entry(directory.allocate(address, new Entry)); } } action(dd_deallocateDir, "dd", desc="deallocate Directory Cache") { if (is_valid(cache_entry)) { directory.deallocate(address); } unset_cache_entry(); } action(ss_sendStaleNotification, "ss", desc="stale data; nothing to writeback") { enqueue(responseToNB_out, ResponseMsg, issue_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:StaleNotif; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.Sender := machineID; out_msg.MessageSize := MessageSizeType:Response_Control; } } action(wb_data, "wb", desc="write back data") { enqueue(responseToNB_out, ResponseMsg, issue_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUData; out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.DataBlk := tbe.DataBlk; out_msg.Dirty := tbe.Dirty; if (tbe.Shared) { out_msg.NbReqShared := true; } else { out_msg.NbReqShared := false; } out_msg.State := CoherenceState:Shared; // faux info out_msg.MessageSize := MessageSizeType:Writeback_Data; DPRINTF(RubySlicc, "%s\n", out_msg); } } action(sf_setSharedFlip, "sf", desc="hit by shared probe, status may be different") { assert(is_valid(tbe)); tbe.Shared := true; } action(y_writeDataToTBE, "y", desc="write Probe Data to TBE") { peek(responseNetwork_in, ResponseMsg) { if (!tbe.Dirty || in_msg.Dirty) { tbe.DataBlk := in_msg.DataBlk; tbe.Dirty := in_msg.Dirty; } if (in_msg.Hit) { tbe.Cached := true; } } } action(ty_writeTCCDataToTBE, "ty", desc="write TCC Probe Data to TBE") { peek(w_TCCResponse_in, ResponseMsg) { if (!tbe.Dirty || in_msg.Dirty) { tbe.DataBlk := in_msg.DataBlk; tbe.Dirty := in_msg.Dirty; } if (in_msg.Hit) { tbe.Cached := true; } } } action(ut_updateTag, "ut", desc="update Tag (i.e. set MRU)") { directory.setMRU(address); } // TRANSITIONS // Handling TCP/SQC requests (similar to how NB dir handles TCC events with some changes to account for stateful directory). // transitions from base transition(I, RdBlk, I_ES){TagArrayRead} { d_allocateDir; t_allocateTBE; n_issueRdBlk; i_popIncomingRequestQueue; } transition(I, RdBlkS, I_S){TagArrayRead} { d_allocateDir; t_allocateTBE; nS_issueRdBlkS; i_popIncomingRequestQueue; } transition(I_S, NB_AckS, BBB_S) { fa_forwardSysAck; pR_popResponseFromNBQueue; } transition(I_ES, NB_AckS, BBB_S) { fa_forwardSysAck; pR_popResponseFromNBQueue; } transition(I_ES, NB_AckE, BBB_E) { fa_forwardSysAck; pR_popResponseFromNBQueue; } transition({S_M, O_M}, {NB_AckCtoD,NB_AckM}, BBB_M) { fa_forwardSysAck; pR_popResponseFromNBQueue; } transition(I_M, NB_AckM, BBB_M) { fa_forwardSysAck; pR_popResponseFromNBQueue; } transition(BBB_M, CoreUnblock, M){TagArrayWrite} { c_clearOwner; cc_clearSharers; e_ownerIsUnblocker; uu_sendUnblock; dt_deallocateTBE; j_popIncomingUnblockQueue; } transition(BBB_S, CoreUnblock, S){TagArrayWrite} { as_addToSharers; uu_sendUnblock; dt_deallocateTBE; j_popIncomingUnblockQueue; } transition(BBB_E, CoreUnblock, E){TagArrayWrite} { as_addToSharers; uu_sendUnblock; dt_deallocateTBE; j_popIncomingUnblockQueue; } transition(I, RdBlkM, I_M){TagArrayRead} { d_allocateDir; t_allocateTBE; nM_issueRdBlkM; i_popIncomingRequestQueue; } // transition(S, {RdBlk, RdBlkS}, BBS_S){TagArrayRead} { t_allocateTBE; sc_probeShrCoreData; s2_probeShrL2Data; q_addOutstandingMergedSharer; i_popIncomingRequestQueue; } // Merging of read sharing into a single request transition(BBS_S, {RdBlk, RdBlkS}) { q_addOutstandingMergedSharer; i_popIncomingRequestQueue; } // Wait for probe acks to be complete transition(BBS_S, CPUPrbResp) { ccr_copyCoreResponseToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } transition(BBS_S, TCCPrbResp) { ctr_copyTCCResponseToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } // Window for merging complete with this transition // Send responses to all outstanding transition(BBS_S, ProbeAcksComplete, BB_S) { sCS_sendCollectiveResponseS; pt_popTriggerQueue; } transition(BB_S, CoreUnblock, BB_S) { m_addUnlockerToSharers; j_popIncomingUnblockQueue; } transition(BB_S, LastCoreUnblock, S) { m_addUnlockerToSharers; dt_deallocateTBE; j_popIncomingUnblockQueue; } transition(O, {RdBlk, RdBlkS}, BBO_O){TagArrayRead} { t_allocateTBE; pso_probeSharedDataOwner; q_addOutstandingMergedSharer; i_popIncomingRequestQueue; } // Merging of read sharing into a single request transition(BBO_O, {RdBlk, RdBlkS}) { q_addOutstandingMergedSharer; i_popIncomingRequestQueue; } // Wait for probe acks to be complete transition(BBO_O, CPUPrbResp) { ccr_copyCoreResponseToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } transition(BBO_O, TCCPrbResp) { ctr_copyTCCResponseToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } // Window for merging complete with this transition // Send responses to all outstanding transition(BBO_O, ProbeAcksComplete, BB_OO) { sCS_sendCollectiveResponseS; pt_popTriggerQueue; } transition(BB_OO, CoreUnblock) { m_addUnlockerToSharers; j_popIncomingUnblockQueue; } transition(BB_OO, LastCoreUnblock, O){TagArrayWrite} { m_addUnlockerToSharers; dt_deallocateTBE; j_popIncomingUnblockQueue; } transition(S, CPUWrite, BW_S){TagArrayRead} { t_allocateTBE; rC_removeCoreFromSharers; sT_sendRequestToTCC; i_popIncomingRequestQueue; } transition(E, CPUWrite, BW_E){TagArrayRead} { t_allocateTBE; rC_removeCoreFromSharers; sT_sendRequestToTCC; i_popIncomingRequestQueue; } transition(O, CPUWrite, BW_O){TagArrayRead} { t_allocateTBE; rCo_removeCoreFromOwner; rC_removeCoreFromSharers; sT_sendRequestToTCC; i_popIncomingRequestQueue; } transition(M, CPUWrite, BW_M){TagArrayRead} { t_allocateTBE; rCo_removeCoreFromOwner; rC_removeCoreFromSharers; sT_sendRequestToTCC; i_popIncomingRequestQueue; } transition(BW_S, TCCUnblock_Sharer, S){TagArrayWrite} { aT_addTCCToSharers; dt_deallocateTBE; plu_popTCCUnblockQueue; } transition(BW_S, TCCUnblock_NotValid, S){TagArrayWrite} { dt_deallocateTBE; plu_popTCCUnblockQueue; } transition(BW_E, TCCUnblock, E){TagArrayWrite} { cc_clearSharers; aT_addTCCToSharers; dt_deallocateTBE; plu_popTCCUnblockQueue; } transition(BW_E, TCCUnblock_NotValid, E) { dt_deallocateTBE; plu_popTCCUnblockQueue; } transition(BW_M, TCCUnblock, M) { c_clearOwner; cc_clearSharers; eT_ownerIsUnblocker; dt_deallocateTBE; plu_popTCCUnblockQueue; } transition(BW_M, TCCUnblock_NotValid, M) { // Note this transition should only be executed if we received a stale wb dt_deallocateTBE; plu_popTCCUnblockQueue; } transition(BW_O, TCCUnblock, O) { c_clearOwner; eT_ownerIsUnblocker; dt_deallocateTBE; plu_popTCCUnblockQueue; } transition(BW_O, TCCUnblock_NotValid, O) { // Note this transition should only be executed if we received a stale wb dt_deallocateTBE; plu_popTCCUnblockQueue; } // We lost the owner likely do to an invalidation racing with a 'O' wb transition(BW_O, TCCUnblock_Sharer, S) { c_clearOwner; aT_addTCCToSharers; dt_deallocateTBE; plu_popTCCUnblockQueue; } transition({BW_M, BW_S, BW_E, BW_O}, {PrbInv,PrbInvData,PrbShrData}) { ww_recycleProbeRequest; } transition(BRWD_I, {PrbInvData, PrbInv, PrbShrData}) { ww_recycleProbeRequest; } // Three step process: locally invalidate others, issue CtoD, wait for NB_AckCtoD transition(S, CtoD, BBS_UM) {TagArrayRead} { t_allocateTBE; lpc_probeInvCore; i2_probeInvL2; o_checkForAckCompletion; i_popIncomingRequestQueue; } transition(BBS_UM, CPUPrbResp, BBS_UM) { x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } transition(BBS_UM, TCCPrbResp) { x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } transition(BBS_UM, ProbeAcksComplete, S_M) { rU_rememberUpgrade; nM_issueRdBlkM; pt_popTriggerQueue; } // Three step process: locally invalidate others, issue CtoD, wait for NB_AckCtoD transition(O, CtoD, BBO_UM){TagArrayRead} { t_allocateTBE; lpc_probeInvCore; i2_probeInvL2; o_checkForAckCompletion; i_popIncomingRequestQueue; } transition(BBO_UM, CPUPrbResp, BBO_UM) { ruo_rememberUntransferredOwner; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } transition(BBO_UM, TCCPrbResp) { ruoT_rememberUntransferredOwnerTCC; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } transition(BBO_UM, ProbeAcksComplete, O_M) { rU_rememberUpgrade; nM_issueRdBlkM; pt_popTriggerQueue; } transition({S,E}, RdBlkM, BBS_M){TagArrayWrite} { t_allocateTBE; ldc_probeInvCoreData; ld2_probeInvL2Data; o_checkForAckCompletion; i_popIncomingRequestQueue; } transition(BBS_M, CPUPrbResp) { ccr_copyCoreResponseToTBE; rR_removeResponderFromSharers; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } transition(BBS_M, TCCPrbResp) { ctr_copyTCCResponseToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } transition(BBS_M, ProbeAcksComplete, S_M) { nM_issueRdBlkM; pt_popTriggerQueue; } transition(O, RdBlkM, BBO_M){TagArrayRead} { t_allocateTBE; ldc_probeInvCoreData; ld2_probeInvL2Data; o_checkForAckCompletion; i_popIncomingRequestQueue; } transition(BBO_M, CPUPrbResp) { ccr_copyCoreResponseToTBE; rR_removeResponderFromSharers; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } transition(BBO_M, TCCPrbResp) { ctr_copyTCCResponseToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } transition(BBO_M, ProbeAcksComplete, O_M) { nM_issueRdBlkM; pt_popTriggerQueue; } // transition(M, RdBlkM, BBM_M){TagArrayRead} { t_allocateTBE; ldc_probeInvCoreData; ld2_probeInvL2Data; i_popIncomingRequestQueue; } transition(BBM_M, CPUPrbResp) { ccr_copyCoreResponseToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } // TCP recalled block before receiving probe transition({BBM_M, BBS_M, BBO_M}, {CPUWrite,NoCPUWrite}) { zz_recycleRequest; } transition(BBM_M, TCCPrbResp) { ctr_copyTCCResponseToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } transition(BBM_M, ProbeAcksComplete, BB_M) { sM_sendResponseM; pt_popTriggerQueue; } transition(BB_M, CoreUnblock, M){TagArrayWrite} { e_ownerIsUnblocker; dt_deallocateTBE; j_popIncomingUnblockQueue; } transition(M, {RdBlkS, RdBlk}, BBM_O){TagArrayRead} { t_allocateTBE; sc_probeShrCoreData; s2_probeShrL2Data; i_popIncomingRequestQueue; } transition(E, {RdBlkS, RdBlk}, BBM_O){TagArrayRead} { t_allocateTBE; eto_moveExSharerToOwner; sc_probeShrCoreData; s2_probeShrL2Data; i_popIncomingRequestQueue; } transition(BBM_O, CPUPrbResp) { ccr_copyCoreResponseToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } transition(BBM_O, TCCPrbResp) { ctr_copyTCCResponseToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } transition(BBM_O, ProbeAcksComplete, BB_O) { sS_sendResponseS; pt_popTriggerQueue; } transition(BB_O, CoreUnblock, O){TagArrayWrite} { as_addToSharers; dt_deallocateTBE; j_popIncomingUnblockQueue; } transition({BBO_O, BBM_M, BBS_S, BBM_O, BB_M, BB_O, BB_S, BBO_UM, BBS_UM, BBS_M, BBO_M, BB_OO}, {PrbInvData, PrbInv,PrbShrData}) { ww_recycleProbeRequest; } transition({BBM_O, BBS_S, CP_S, CP_O, CP_SM, CP_OM, BBO_O}, {CPUWrite,NoCPUWrite}) { zz_recycleRequest; } // stale CtoD raced with external invalidation transition({I, CP_I, B_I, CP_IOM, CP_ISM, CP_OSIW, BRWD_I, BRW_I, BRD_I}, CtoD) { i_popIncomingRequestQueue; } // stale CtoD raced with internal RdBlkM transition({BBM_M, BBS_M, BBO_M, BBB_M, BBS_UM, BBO_UM}, CtoD) { i_popIncomingRequestQueue; } transition({E, M}, CtoD) { i_popIncomingRequestQueue; } // TCC-directory has sent out (And potentially received acks for) probes. // TCP/SQC replacement (known to be stale subsequent) are popped off. transition({BBO_UM, BBS_UM}, {CPUWrite,NoCPUWrite}) { nC_sendNullWBAckToCore; i_popIncomingRequestQueue; } transition(S_M, {NoCPUWrite, CPUWrite}) { zz_recycleRequest; } transition(O_M, {NoCPUWrite, CPUWrite}) { zz_recycleRequest; } transition({BBM_M, BBS_M, BBO_M, BBO_UM, BBS_UM}, {VicDirty, VicClean, VicDirtyLast, NoVic}) { nT_sendNullWBAckToTCC; pl_popTCCRequestQueue; } transition({CP_S, CP_O, CP_OM, CP_SM}, {VicDirty, VicClean, VicDirtyLast, CancelWB, NoVic}) { yy_recycleTCCRequestQueue; } // However, when TCCdir has sent out PrbSharedData, one cannot ignore. transition({BBS_S, BBO_O, BBM_O, S_M, O_M, BBB_M, BBB_S, BBB_E}, {VicDirty, VicClean, VicDirtyLast,CancelWB}) { yy_recycleTCCRequestQueue; } transition({BW_S,BW_E,BW_O, BW_M}, {VicDirty, VicClean, VicDirtyLast, NoVic}) { yy_recycleTCCRequestQueue; } transition({BW_S,BW_E,BW_O, BW_M}, CancelWB) { nT_sendNullWBAckToTCC; pl_popTCCRequestQueue; } /// recycle if waiting for unblocks. transition({BB_M,BB_O,BB_S,BB_OO}, {VicDirty, VicClean, VicDirtyLast,NoVic,CancelWB}) { yy_recycleTCCRequestQueue; } transition({BBS_S, BBO_O}, NoVic) { rT_removeTCCFromSharers; nT_sendNullWBAckToTCC; pl_popTCCRequestQueue; } // stale. Pop message and send dummy ack. transition({I_S, I_ES, I_M}, {VicDirty, VicClean, VicDirtyLast, NoVic}) { nT_sendNullWBAckToTCC; pl_popTCCRequestQueue; } transition(M, VicDirtyLast, VM_I){TagArrayRead} { tv_allocateTBE; vd_victim; pl_popTCCRequestQueue; } transition(E, VicDirty, VM_I){TagArrayRead} { tv_allocateTBE; vd_victim; pl_popTCCRequestQueue; } transition(O, VicDirty, VO_S){TagArrayRead} { tv_allocateTBE; vd_victim; pl_popTCCRequestQueue; } transition(O, {VicDirtyLast, VicClean}, VO_I){TagArrayRead} { tv_allocateTBE; vd_victim; pl_popTCCRequestQueue; } transition({E, S}, VicClean, VES_I){TagArrayRead} { tv_allocateTBE; vc_victim; pl_popTCCRequestQueue; } transition({O, S}, NoVic){TagArrayRead} { rT_removeTCCFromSharers; nT_sendNullWBAckToTCC; pl_popTCCRequestQueue; } transition({O,S}, NoCPUWrite){TagArrayRead} { rC_removeCoreFromSharers; nC_sendNullWBAckToCore; i_popIncomingRequestQueue; } transition({M,E}, NoCPUWrite){TagArrayRead} { rC_removeCoreFromSharers; nC_sendNullWBAckToCore; i_popIncomingRequestQueue; } // This can only happen if it is race. (TCCdir sent out probes which caused this cancel in the first place.) transition({VM_I, VES_I, VO_I}, CancelWB) { pl_popTCCRequestQueue; } transition({VM_I, VES_I, VO_I}, NB_AckWB, I){TagArrayWrite} { c_clearOwner; cc_clearSharers; wb_data; fw2_forwardWBAck; dt_deallocateTBE; dd_deallocateDir; pR_popResponseFromNBQueue; } transition(VO_S, NB_AckWB, S){TagArrayWrite} { c_clearOwner; wb_data; fw2_forwardWBAck; dt_deallocateTBE; pR_popResponseFromNBQueue; } transition(I_C, NB_AckWB, I){TagArrayWrite} { c_clearOwner; cc_clearSharers; ss_sendStaleNotification; fw2_forwardWBAck; dt_deallocateTBE; dd_deallocateDir; pR_popResponseFromNBQueue; } transition(I_W, NB_AckWB, I) { ss_sendStaleNotification; dt_deallocateTBE; dd_deallocateDir; pR_popResponseFromNBQueue; } // Do not handle replacements, reads of any kind or writebacks from transients; recycle transition({I_M, I_ES, I_S, MO_I, ES_I, S_M, O_M, VES_I, VO_I, VO_S, VM_I, I_C, I_W}, {RdBlkS,RdBlkM,RdBlk,CtoD}) { zz_recycleRequest; } transition( VO_S, NoCPUWrite) { zz_recycleRequest; } transition({BW_M, BW_S, BW_O, BW_E}, {RdBlkS,RdBlkM,RdBlk,CtoD,NoCPUWrite, CPUWrite}) { zz_recycleRequest; } transition({BBB_M, BBB_S, BBB_E, BB_O, BB_M, BB_S, BB_OO}, { RdBlk, RdBlkS, RdBlkM, CPUWrite, NoCPUWrite}) { zz_recycleRequest; } transition({BBB_S, BBB_E, BB_O, BB_S, BB_OO}, { CtoD}) { zz_recycleRequest; } transition({BBS_UM, BBO_UM, BBM_M, BBM_O, BBS_M, BBO_M}, { RdBlk, RdBlkS, RdBlkM}) { zz_recycleRequest; } transition(BBM_O, CtoD) { zz_recycleRequest; } transition({BBS_S, BBO_O}, {RdBlkM, CtoD}) { zz_recycleRequest; } transition({B_I, CP_I, CP_S, CP_O, CP_OM, CP_SM, CP_IOM, CP_ISM, CP_OSIW, BRWD_I, BRW_I, BRD_I}, {RdBlk, RdBlkS, RdBlkM}) { zz_recycleRequest; } transition({CP_O, CP_S, CP_OM}, CtoD) { zz_recycleRequest; } // Ignore replacement related messages after probe got in. transition({CP_I, B_I, CP_IOM, CP_ISM, CP_OSIW, BRWD_I, BRW_I, BRD_I}, {CPUWrite, NoCPUWrite}) { zz_recycleRequest; } // Ignore replacement related messages after probes processed transition({I, I_S, I_ES, I_M, I_C, I_W}, {CPUWrite,NoCPUWrite}) { nC_sendNullWBAckToCore; i_popIncomingRequestQueue; } // cannot ignore cancel... otherwise TCP/SQC will be stuck in I_C transition({I, I_S, I_ES, I_M, I_C, I_W, S_M, M, O, E, S}, CPUWriteCancel){TagArrayRead} { nC_sendNullWBAckToCore; i_popIncomingRequestQueue; } transition({CP_I, B_I, CP_IOM, CP_ISM, BRWD_I, BRW_I, BRD_I}, {NoVic, VicClean, VicDirty, VicDirtyLast}){ nT_sendNullWBAckToTCC; pl_popTCCRequestQueue; } // Handling Probes from NB (General process: (1) propagate up, go to blocking state (2) process acks (3) on last ack downward.) // step 1 transition({M, O, E, S}, PrbInvData, CP_I){TagArrayRead} { tp_allocateTBE; dc_probeInvCoreData; d2_probeInvL2Data; pp_popProbeQueue; } // step 2a transition(CP_I, CPUPrbResp) { y_writeDataToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } // step 2b transition(CP_I, TCCPrbResp) { ty_writeTCCDataToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } // step 3 transition(CP_I, ProbeAcksComplete, I){TagArrayWrite} { pd_sendProbeResponseData; c_clearOwner; cc_clearSharers; dt_deallocateTBE; dd_deallocateDir; pt_popTriggerQueue; } // step 1 transition({M, O, E, S}, PrbInv, B_I){TagArrayWrite} { tp_allocateTBE; ipc_probeInvCore; i2_probeInvL2; pp_popProbeQueue; } // step 2 transition(B_I, CPUPrbResp) { x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } // step 2b transition(B_I, TCCPrbResp) { x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } // step 3 transition(B_I, ProbeAcksComplete, I){TagArrayWrite} { // send response down to NB pi_sendProbeResponseInv; c_clearOwner; cc_clearSharers; dt_deallocateTBE; dd_deallocateDir; pt_popTriggerQueue; } // step 1 transition({M, O}, PrbShrData, CP_O){TagArrayRead} { tp_allocateTBE; sc_probeShrCoreData; s2_probeShrL2Data; pp_popProbeQueue; } transition(E, PrbShrData, CP_O){TagArrayRead} { tp_allocateTBE; eto_moveExSharerToOwner; sc_probeShrCoreData; s2_probeShrL2Data; pp_popProbeQueue; } // step 2 transition(CP_O, CPUPrbResp) { y_writeDataToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } // step 2b transition(CP_O, TCCPrbResp) { ty_writeTCCDataToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } // step 3 transition(CP_O, ProbeAcksComplete, O){TagArrayWrite} { // send response down to NB pd_sendProbeResponseData; dt_deallocateTBE; pt_popTriggerQueue; } //step 1 transition(S, PrbShrData, CP_S) { tp_allocateTBE; sc_probeShrCoreData; s2_probeShrL2Data; pp_popProbeQueue; } // step 2 transition(CP_S, CPUPrbResp) { y_writeDataToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } // step 2b transition(CP_S, TCCPrbResp) { ty_writeTCCDataToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } // step 3 transition(CP_S, ProbeAcksComplete, S) { // send response down to NB pd_sendProbeResponseData; dt_deallocateTBE; pt_popTriggerQueue; } // step 1 transition(O_M, PrbInvData, CP_IOM) { dc_probeInvCoreData; d2_probeInvL2Data; pp_popProbeQueue; } // step 2a transition(CP_IOM, CPUPrbResp) { y_writeDataToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } // step 2b transition(CP_IOM, TCCPrbResp) { ty_writeTCCDataToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } // step 3 transition(CP_IOM, ProbeAcksComplete, I_M) { pdm_sendProbeResponseDataMs; c_clearOwner; cc_clearSharers; cd_clearDirtyBitTBE; pt_popTriggerQueue; } transition(CP_IOM, ProbeAcksCompleteReissue, I){TagArrayWrite} { pdm_sendProbeResponseDataMs; c_clearOwner; cc_clearSharers; dt_deallocateTBE; dd_deallocateDir; pt_popTriggerQueue; } // step 1 transition(S_M, PrbInvData, CP_ISM) { dc_probeInvCoreData; d2_probeInvL2Data; o_checkForAckCompletion; pp_popProbeQueue; } // step 2a transition(CP_ISM, CPUPrbResp) { y_writeDataToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } // step 2b transition(CP_ISM, TCCPrbResp) { ty_writeTCCDataToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } // step 3 transition(CP_ISM, ProbeAcksComplete, I_M) { pdm_sendProbeResponseDataMs; c_clearOwner; cc_clearSharers; cd_clearDirtyBitTBE; //dt_deallocateTBE; pt_popTriggerQueue; } transition(CP_ISM, ProbeAcksCompleteReissue, I){TagArrayWrite} { pim_sendProbeResponseInvMs; c_clearOwner; cc_clearSharers; dt_deallocateTBE; dd_deallocateDir; pt_popTriggerQueue; } // step 1 transition({S_M, O_M}, {PrbInv}, CP_ISM) { dc_probeInvCoreData; d2_probeInvL2Data; pp_popProbeQueue; } // next steps inherited from BS_ISM // Simpler cases transition({I_C, I_W}, {PrbInvData, PrbInv, PrbShrData}) { pi_sendProbeResponseInv; pp_popProbeQueue; } //If the directory is certain that the block is not present, one can send an acknowledgement right away. // No need for three step process. transition(I, {PrbInv,PrbShrData,PrbInvData}){TagArrayRead} { pi_sendProbeResponseInv; pp_popProbeQueue; } transition({I_M, I_ES, I_S}, {PrbInv, PrbInvData}) { pi_sendProbeResponseInv; pp_popProbeQueue; } transition({I_M, I_ES, I_S}, PrbShrData) { prm_sendProbeResponseMiss; pp_popProbeQueue; } //step 1 transition(S_M, PrbShrData, CP_SM) { sc_probeShrCoreData; s2_probeShrL2Data; o_checkForAckCompletion; pp_popProbeQueue; } // step 2 transition(CP_SM, CPUPrbResp) { y_writeDataToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } // step 2b transition(CP_SM, TCCPrbResp) { ty_writeTCCDataToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } // step 3 transition(CP_SM, {ProbeAcksComplete,ProbeAcksCompleteReissue}, S_M){DataArrayRead} { // send response down to NB pd_sendProbeResponseData; pt_popTriggerQueue; } //step 1 transition(O_M, PrbShrData, CP_OM) { sc_probeShrCoreData; s2_probeShrL2Data; pp_popProbeQueue; } // step 2 transition(CP_OM, CPUPrbResp) { y_writeDataToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } // step 2b transition(CP_OM, TCCPrbResp) { ty_writeTCCDataToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } // step 3 transition(CP_OM, {ProbeAcksComplete,ProbeAcksCompleteReissue}, O_M) { // send response down to NB pd_sendProbeResponseData; pt_popTriggerQueue; } transition(BRW_I, PrbInvData, I_W) { pd_sendProbeResponseData; pp_popProbeQueue; } transition({VM_I,VO_I}, PrbInvData, I_C) { pd_sendProbeResponseData; pp_popProbeQueue; } transition(VES_I, {PrbInvData,PrbInv}, I_C) { pi_sendProbeResponseInv; pp_popProbeQueue; } transition({VM_I, VO_I, BRW_I}, PrbInv, I_W) { pi_sendProbeResponseInv; pp_popProbeQueue; } transition({VM_I, VO_I, VO_S, VES_I, BRW_I}, PrbShrData) { pd_sendProbeResponseData; sf_setSharedFlip; pp_popProbeQueue; } transition(VO_S, PrbInvData, CP_OSIW) { dc_probeInvCoreData; d2_probeInvL2Data; pp_popProbeQueue; } transition(CP_OSIW, TCCPrbResp) { x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } transition(CP_OSIW, CPUPrbResp) { x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } transition(CP_OSIW, ProbeAcksComplete, I_C) { pd_sendProbeResponseData; cd_clearDirtyBitTBE; pt_popTriggerQueue; } transition({I, S, E, O, M, CP_O, CP_S, CP_OM, CP_SM, CP_OSIW, BW_S, BW_E, BW_O, BW_M, I_M, I_ES, I_S, BBS_S, BBO_O, BBM_M, BBM_O, BB_M, BB_O, BB_OO, BB_S, BBS_M, BBO_M, BBO_UM, BBS_UM, S_M, O_M, BBB_S, BBB_M, BBB_E, VES_I, VM_I, VO_I, VO_S, ES_I, MO_I, I_C, I_W}, StaleVic) { nT_sendNullWBAckToTCC; pl_popTCCRequestQueue; } transition({CP_I, B_I, CP_IOM, CP_ISM, BRWD_I, BRW_I, BRD_I}, StaleVic) { nT_sendNullWBAckToTCC; pl_popTCCRequestQueue; } // Recall Transistions // transient states still require the directory state transition({M, O}, Recall, BRWD_I) { tr_allocateTBE; vd_victim; dc_probeInvCoreData; d2_probeInvL2Data; } transition({E, S}, Recall, BRWD_I) { tr_allocateTBE; vc_victim; dc_probeInvCoreData; d2_probeInvL2Data; } transition(I, Recall) { dd_deallocateDir; } transition({BRWD_I, BRD_I}, CPUPrbResp) { y_writeDataToTBE; x_decrementAcks; o_checkForAckCompletion; pk_popResponseQueue; } transition({BRWD_I, BRD_I}, TCCPrbResp) { ty_writeTCCDataToTBE; x_decrementAcks; o_checkForAckCompletion; plr_popTCCResponseQueue; } transition(BRWD_I, NB_AckWB, BRD_I) { pR_popResponseFromNBQueue; } transition(BRWD_I, ProbeAcksComplete, BRW_I) { pt_popTriggerQueue; } transition(BRW_I, NB_AckWB, I) { wb_data; dt_deallocateTBE; dd_deallocateDir; pR_popResponseFromNBQueue; } transition(BRD_I, ProbeAcksComplete, I) { wb_data; dt_deallocateTBE; dd_deallocateDir; pt_popTriggerQueue; } // wait for stable state for Recall transition({BRWD_I,BRD_I,BRW_I,CP_O, CP_S, CP_OM, CP_SM, CP_OSIW, BW_S, BW_E, BW_O, BW_M, I_M, I_ES, I_S, BBS_S, BBO_O, BBM_M, BBM_O, BB_M, BB_O, BB_OO, BB_S, BBS_M, BBO_M, BBO_UM, BBS_UM, S_M, O_M, BBB_S, BBB_M, BBB_E, VES_I, VM_I, VO_I, VO_S, ES_I, MO_I, I_C, I_W, CP_I}, Recall) { zz_recycleRequest; // stall and wait would be for the wrong address ut_updateTag; // try to find an easier recall } }