/*
 * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

machine(L1Cache, "MESI Directory L1 Cache CMP")
 : Sequencer * sequencer,
   CacheMemory * L1IcacheMemory,
   CacheMemory * L1DcacheMemory,
   int l2_select_num_bits,
   int l1_request_latency = 2,
   int l1_response_latency = 2,
   int to_l2_latency = 1,
   bool send_evictions
{
  // NODE L1 CACHE
  // From this node's L1 cache TO the network
  // a local L1 -> this L2 bank, currently ordered with directory forwarded requests
  MessageBuffer requestFromL1Cache, network="To", virtual_network="0", ordered="false", vnet_type="request";
  // a local L1 -> this L2 bank
  MessageBuffer responseFromL1Cache, network="To", virtual_network="1", ordered="false", vnet_type="response";
  MessageBuffer unblockFromL1Cache, network="To", virtual_network="2", ordered="false", vnet_type="unblock";


  // To this node's L1 cache FROM the network
  // a L2 bank -> this L1
  MessageBuffer requestToL1Cache, network="From", virtual_network="0", ordered="false", vnet_type="request";
  // a L2 bank -> this L1
  MessageBuffer responseToL1Cache, network="From", virtual_network="1", ordered="false", vnet_type="response";

  // STATES
  state_declaration(State, desc="Cache states", default="L1Cache_State_I") {
    // Base states
    NP, AccessPermission:Invalid, desc="Not present in either cache";
    I, AccessPermission:Invalid, desc="a L1 cache entry Idle";
    S, AccessPermission:Read_Only, desc="a L1 cache entry Shared";
    E, AccessPermission:Read_Only, desc="a L1 cache entry Exclusive";
    M, AccessPermission:Read_Write, desc="a L1 cache entry Modified", format="!b";

    // Transient States
    IS, AccessPermission:Busy, desc="L1 idle, issued GETS, have not seen response yet";
    IM, AccessPermission:Busy, desc="L1 idle, issued GETX, have not seen response yet";
    SM, AccessPermission:Read_Only, desc="L1 idle, issued GETX, have not seen response yet";
    IS_I, AccessPermission:Busy, desc="L1 idle, issued GETS, saw Inv before data because directory doesn't block on GETS hit";

    M_I, AccessPermission:Busy, desc="L1 replacing, waiting for ACK";
    SINK_WB_ACK, AccessPermission:Busy, desc="This is to sink WB_Acks from L2";

  }

  // EVENTS
  enumeration(Event, desc="Cache events") {
    // L1 events
    Load,            desc="Load request from the home processor";
    Ifetch,          desc="I-fetch request from the home processor";
    Store,           desc="Store request from the home processor";

    Inv,           desc="Invalidate request from L2 bank";

    // internal generated request
    L1_Replacement,  desc="L1 Replacement", format="!r";

    // other requests
    Fwd_GETX,   desc="GETX from other processor";
    Fwd_GETS,   desc="GETS from other processor";
    Fwd_GET_INSTR,   desc="GET_INSTR from other processor";

    Data,       desc="Data for processor";
    Data_Exclusive,       desc="Data for processor";
    DataS_fromL1,       desc="data for GETS request, need to unblock directory";
    Data_all_Acks,       desc="Data for processor, all acks";

    Ack,        desc="Ack for processor";
    Ack_all,      desc="Last ack for processor";

    WB_Ack,        desc="Ack for replacement";
  }

  // TYPES

  // CacheEntry
  structure(Entry, desc="...", interface="AbstractCacheEntry" ) {
    State CacheState,        desc="cache state";
    DataBlock DataBlk,       desc="data for the block";
    bool Dirty, default="false",   desc="data is dirty";
  }

  // TBE fields
  structure(TBE, desc="...") {
    Address Address,              desc="Physical address for this TBE";
    State TBEState,        desc="Transient state";
    DataBlock DataBlk,                desc="Buffer for the data block";
    bool Dirty, default="false",   desc="data is dirty";
    bool isPrefetch,       desc="Set if this was caused by a prefetch";
    int pendingAcks, default="0", desc="number of pending acks";
  }

  structure(TBETable, external="yes") {
    TBE lookup(Address);
    void allocate(Address);
    void deallocate(Address);
    bool isPresent(Address);
  }

  TBETable L1_TBEs, template_hack="<L1Cache_TBE>";

  MessageBuffer mandatoryQueue, ordered="false";

  int l2_select_low_bit, default="RubySystem::getBlockSizeBits()";

  void set_cache_entry(AbstractCacheEntry a);
  void unset_cache_entry();
  void set_tbe(TBE a);
  void unset_tbe();

  // inclusive cache returns L1 entries only
  Entry getCacheEntry(Address addr), return_by_pointer="yes" {
    Entry L1Dcache_entry := static_cast(Entry, "pointer", L1DcacheMemory[addr]);
    if(is_valid(L1Dcache_entry)) {
      return L1Dcache_entry;
    }

    Entry L1Icache_entry := static_cast(Entry, "pointer", L1IcacheMemory[addr]);
    return L1Icache_entry;
  }

  Entry getL1DCacheEntry(Address addr), return_by_pointer="yes" {
    Entry L1Dcache_entry := static_cast(Entry, "pointer", L1DcacheMemory[addr]);
    return L1Dcache_entry;
  }

  Entry getL1ICacheEntry(Address addr), return_by_pointer="yes" {
    Entry L1Icache_entry := static_cast(Entry, "pointer", L1IcacheMemory[addr]);
    return L1Icache_entry;
  }

  State getState(TBE tbe, Entry cache_entry, Address addr) {
    assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);

    if(is_valid(tbe)) {
      return tbe.TBEState;
    } else if (is_valid(cache_entry)) {
      return cache_entry.CacheState;
    }
    return State:NP;
  }

  void setState(TBE tbe, Entry cache_entry, Address addr, State state) {
    assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);

    // MUST CHANGE
    if(is_valid(tbe)) {
      tbe.TBEState := state;
    }

    if (is_valid(cache_entry)) {
      cache_entry.CacheState := state;
    }
  }

  AccessPermission getAccessPermission(Address addr) {
    TBE tbe := L1_TBEs[addr];
    if(is_valid(tbe)) {
      DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(tbe.TBEState));
      return L1Cache_State_to_permission(tbe.TBEState);
    }

    Entry cache_entry := getCacheEntry(addr);
    if(is_valid(cache_entry)) {
      DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(cache_entry.CacheState));
      return L1Cache_State_to_permission(cache_entry.CacheState);
    }

    DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent);
    return AccessPermission:NotPresent;
  }

  DataBlock getDataBlock(Address addr), return_by_ref="yes" {
    return getCacheEntry(addr).DataBlk;
  }

  void setAccessPermission(Entry cache_entry, Address addr, State state) {
    if (is_valid(cache_entry)) {
      cache_entry.changePermission(L1Cache_State_to_permission(state));
    }
  }

  Event mandatory_request_type_to_event(RubyRequestType type) {
    if (type == RubyRequestType:LD) {
      return Event:Load;
    } else if (type == RubyRequestType:IFETCH) {
      return Event:Ifetch;
    } else if ((type == RubyRequestType:ST) || (type == RubyRequestType:ATOMIC)) {
      return Event:Store;
    } else {
      error("Invalid RubyRequestType");
    }
  }

  int getPendingAcks(TBE tbe) {
    return tbe.pendingAcks;
  }

  out_port(requestIntraChipL1Network_out, RequestMsg, requestFromL1Cache);
  out_port(responseIntraChipL1Network_out, ResponseMsg, responseFromL1Cache);
  out_port(unblockNetwork_out, ResponseMsg, unblockFromL1Cache);

  // Response IntraChip L1 Network - response msg to this L1 cache
  in_port(responseIntraChipL1Network_in, ResponseMsg, responseToL1Cache) {
    if (responseIntraChipL1Network_in.isReady()) {
      peek(responseIntraChipL1Network_in, ResponseMsg, block_on="Address") {
        assert(in_msg.Destination.isElement(machineID));

        Entry cache_entry := getCacheEntry(in_msg.Address);
        TBE tbe := L1_TBEs[in_msg.Address];

        if(in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) {
          trigger(Event:Data_Exclusive, in_msg.Address, cache_entry, tbe);
        } else if(in_msg.Type == CoherenceResponseType:DATA) {
          if ((getState(tbe, cache_entry, in_msg.Address) == State:IS ||
               getState(tbe, cache_entry, in_msg.Address) == State:IS_I) &&
              machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache) {

              trigger(Event:DataS_fromL1, in_msg.Address, cache_entry, tbe);

          } else if ( (getPendingAcks(tbe) - in_msg.AckCount) == 0 ) {
            trigger(Event:Data_all_Acks, in_msg.Address, cache_entry, tbe);
          } else {
            trigger(Event:Data, in_msg.Address, cache_entry, tbe);
          }
        } else if (in_msg.Type == CoherenceResponseType:ACK) {
          if ( (getPendingAcks(tbe) - in_msg.AckCount) == 0 ) {
            trigger(Event:Ack_all, in_msg.Address, cache_entry, tbe);
          } else {
            trigger(Event:Ack, in_msg.Address, cache_entry, tbe);
          }
        } else if (in_msg.Type == CoherenceResponseType:WB_ACK) {
          trigger(Event:WB_Ack, in_msg.Address, cache_entry, tbe);
        } else {
          error("Invalid L1 response type");
        }
      }
    }
  }

  // Request InterChip network - request from this L1 cache to the shared L2
  in_port(requestIntraChipL1Network_in, RequestMsg, requestToL1Cache) {
    if(requestIntraChipL1Network_in.isReady()) {
      peek(requestIntraChipL1Network_in, RequestMsg, block_on="Address") {
        assert(in_msg.Destination.isElement(machineID));

        Entry cache_entry := getCacheEntry(in_msg.Address);
        TBE tbe := L1_TBEs[in_msg.Address];

        if (in_msg.Type == CoherenceRequestType:INV) {
          trigger(Event:Inv, in_msg.Address, cache_entry, tbe);
        } else if (in_msg.Type == CoherenceRequestType:GETX || in_msg.Type == CoherenceRequestType:UPGRADE) {
          // upgrade transforms to GETX due to race
          trigger(Event:Fwd_GETX, in_msg.Address, cache_entry, tbe);
        } else if (in_msg.Type == CoherenceRequestType:GETS) {
          trigger(Event:Fwd_GETS, in_msg.Address, cache_entry, tbe);
        } else if (in_msg.Type == CoherenceRequestType:GET_INSTR) {
          trigger(Event:Fwd_GET_INSTR, in_msg.Address, cache_entry, tbe);
        } else {
          error("Invalid forwarded request type");
        }
      }
    }
  }

  // Mandatory Queue betweens Node's CPU and it's L1 caches
  in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...") {
    if (mandatoryQueue_in.isReady()) {
      peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {

        // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache

        if (in_msg.Type == RubyRequestType:IFETCH) {
          // ** INSTRUCTION ACCESS ***

          Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress);
          if (is_valid(L1Icache_entry)) {
            // The tag matches for the L1, so the L1 asks the L2 for it.
            trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
                    L1Icache_entry, L1_TBEs[in_msg.LineAddress]);
          } else {

            // Check to see if it is in the OTHER L1
            Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress);
            if (is_valid(L1Dcache_entry)) {
              // The block is in the wrong L1, put the request on the queue to the shared L2
              trigger(Event:L1_Replacement, in_msg.LineAddress,
                      L1Dcache_entry, L1_TBEs[in_msg.LineAddress]);
            }

            if (L1IcacheMemory.cacheAvail(in_msg.LineAddress)) {
              // L1 does't have the line, but we have space for it in the L1 so let's see if the L2 has it
              trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
                      L1Icache_entry, L1_TBEs[in_msg.LineAddress]);
            } else {
              // No room in the L1, so we need to make room in the L1
              trigger(Event:L1_Replacement, L1IcacheMemory.cacheProbe(in_msg.LineAddress),
                      getL1ICacheEntry(L1IcacheMemory.cacheProbe(in_msg.LineAddress)),
                      L1_TBEs[L1IcacheMemory.cacheProbe(in_msg.LineAddress)]);
            }
          }
        } else {

          // *** DATA ACCESS ***
          Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress);
          if (is_valid(L1Dcache_entry)) {
            // The tag matches for the L1, so the L1 ask the L2 for it
            trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
                    L1Dcache_entry, L1_TBEs[in_msg.LineAddress]);
          } else {

            // Check to see if it is in the OTHER L1
            Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress);
            if (is_valid(L1Icache_entry)) {
              // The block is in the wrong L1, put the request on the queue to the shared L2
              trigger(Event:L1_Replacement, in_msg.LineAddress,
                      L1Icache_entry, L1_TBEs[in_msg.LineAddress]);
            }

            if (L1DcacheMemory.cacheAvail(in_msg.LineAddress)) {
              // L1 does't have the line, but we have space for it in the L1 let's see if the L2 has it
              trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
                      L1Dcache_entry, L1_TBEs[in_msg.LineAddress]);
            } else {
              // No room in the L1, so we need to make room in the L1
              trigger(Event:L1_Replacement, L1DcacheMemory.cacheProbe(in_msg.LineAddress),
                      getL1DCacheEntry(L1DcacheMemory.cacheProbe(in_msg.LineAddress)),
                      L1_TBEs[L1DcacheMemory.cacheProbe(in_msg.LineAddress)]);
            }
          }
        }
      }
    }
  }

  // ACTIONS
  action(a_issueGETS, "a", desc="Issue GETS") {
    peek(mandatoryQueue_in, RubyRequest) {
      enqueue(requestIntraChipL1Network_out, RequestMsg, latency=l1_request_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:GETS;
        out_msg.Requestor := machineID;
        out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
        DPRINTF(RubySlicc, "address: %s, destination: %s\n",
                address, out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.Prefetch := in_msg.Prefetch;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(ai_issueGETINSTR, "ai", desc="Issue GETINSTR") {
    peek(mandatoryQueue_in, RubyRequest) {
      enqueue(requestIntraChipL1Network_out, RequestMsg, latency=l1_request_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:GET_INSTR;
        out_msg.Requestor := machineID;
        out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
        DPRINTF(RubySlicc, "address: %s, destination: %s\n",
                address, out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.Prefetch := in_msg.Prefetch;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }


  action(b_issueGETX, "b", desc="Issue GETX") {
    peek(mandatoryQueue_in, RubyRequest) {
      enqueue(requestIntraChipL1Network_out, RequestMsg, latency=l1_request_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:GETX;
        out_msg.Requestor := machineID;
        DPRINTF(RubySlicc, "%s\n", machineID);
        out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
        DPRINTF(RubySlicc, "address: %s, destination: %s\n",
                address, out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.Prefetch := in_msg.Prefetch;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(c_issueUPGRADE, "c", desc="Issue GETX") {
    peek(mandatoryQueue_in, RubyRequest) {
      enqueue(requestIntraChipL1Network_out, RequestMsg, latency= l1_request_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:UPGRADE;
        out_msg.Requestor := machineID;
        out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
        DPRINTF(RubySlicc, "address: %s, destination: %s\n",
                address, out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.Prefetch := in_msg.Prefetch;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(d_sendDataToRequestor, "d", desc="send data to requestor") {
    peek(requestIntraChipL1Network_in, RequestMsg) {
      enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
        assert(is_valid(cache_entry));
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.DataBlk := cache_entry.DataBlk;
        out_msg.Dirty := cache_entry.Dirty;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(d2_sendDataToL2, "d2", desc="send data to the L2 cache because of M downgrade") {
    enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
      assert(is_valid(cache_entry));
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := cache_entry.DataBlk;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(dt_sendDataToRequestor_fromTBE, "dt", desc="send data to requestor") {
    peek(requestIntraChipL1Network_in, RequestMsg) {
      enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
        assert(is_valid(tbe));
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.DataBlk := tbe.DataBlk;
        out_msg.Dirty := tbe.Dirty;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(d2t_sendDataToL2_fromTBE, "d2t", desc="send data to the L2 cache") {
    enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
      assert(is_valid(tbe));
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := tbe.DataBlk;
      out_msg.Dirty := tbe.Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(e_sendAckToRequestor, "e", desc="send invalidate ack to requestor (could be L2 or L1)") {
    peek(requestIntraChipL1Network_in, RequestMsg) {
      enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Control;
      }
    }
  }

  action(f_sendDataToL2, "f", desc="send data to the L2 cache") {
    enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
      assert(is_valid(cache_entry));
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := cache_entry.DataBlk;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
      out_msg.MessageSize := MessageSizeType:Writeback_Data;
    }
  }

  action(ft_sendDataToL2_fromTBE, "ft", desc="send data to the L2 cache") {
    enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
      assert(is_valid(tbe));
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := tbe.DataBlk;
      out_msg.Dirty := tbe.Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
      out_msg.MessageSize := MessageSizeType:Writeback_Data;
    }
  }

  action(fi_sendInvAck, "fi", desc="send data to the L2 cache") {
    peek(requestIntraChipL1Network_in, RequestMsg) {
      enqueue(responseIntraChipL1Network_out, ResponseMsg, latency=l1_response_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Control;
        out_msg.AckCount := 1;
      }
    }
  }

  action(forward_eviction_to_cpu, "\cc", desc="sends eviction information to the processor") {
    if (send_evictions) {
      DPRINTF(RubySlicc, "Sending invalidation for %s to the CPU\n", address);
      sequencer.evictionCallback(address);
    }
  }

  action(g_issuePUTX, "g", desc="send data to the L2 cache") {
    enqueue(requestIntraChipL1Network_out, RequestMsg, latency=l1_response_latency) {
      assert(is_valid(cache_entry));
      out_msg.Address := address;
      out_msg.Type := CoherenceRequestType:PUTX;
      out_msg.DataBlk := cache_entry.DataBlk;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.Requestor:= machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
      if (cache_entry.Dirty) {
        out_msg.MessageSize := MessageSizeType:Writeback_Data;
      } else {
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(j_sendUnblock, "j", desc="send unblock to the L2 cache") {
    enqueue(unblockNetwork_out, ResponseMsg, latency=to_l2_latency) {
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:UNBLOCK;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
      out_msg.MessageSize := MessageSizeType:Response_Control;
      DPRINTF(RubySlicc, "%s\n", address);
      
    }
  }

  action(jj_sendExclusiveUnblock, "\j", desc="send unblock to the L2 cache") {
    enqueue(unblockNetwork_out, ResponseMsg, latency=to_l2_latency) {
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:EXCLUSIVE_UNBLOCK;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                                                  l2_select_low_bit, l2_select_num_bits));
      out_msg.MessageSize := MessageSizeType:Response_Control;
      DPRINTF(RubySlicc, "%s\n", address);

    }
  }

  action(h_load_hit, "h", desc="If not prefetch, notify sequencer the load completed.") {
    assert(is_valid(cache_entry));
    DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
    sequencer.readCallback(address, cache_entry.DataBlk);
  }

  action(hh_store_hit, "\h", desc="If not prefetch, notify sequencer that store completed.") {
    assert(is_valid(cache_entry));
    DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
    sequencer.writeCallback(address, cache_entry.DataBlk);
    cache_entry.Dirty := true;
  }

  action(i_allocateTBE, "i", desc="Allocate TBE (isPrefetch=0, number of invalidates=0)") {
    check_allocate(L1_TBEs);
    assert(is_valid(cache_entry));
    L1_TBEs.allocate(address);
    set_tbe(L1_TBEs[address]);
    tbe.isPrefetch := false;
    tbe.Dirty := cache_entry.Dirty;
    tbe.DataBlk := cache_entry.DataBlk;
  }

  action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
    mandatoryQueue_in.dequeue();
  }

  action(l_popRequestQueue, "l", desc="Pop incoming request queue and profile the delay within this virtual network") {
    profileMsgDelay(2, requestIntraChipL1Network_in.dequeue_getDelayCycles());
  }

  action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue and profile the delay within this virtual network") {
    profileMsgDelay(3, responseIntraChipL1Network_in.dequeue_getDelayCycles());
  }

  action(s_deallocateTBE, "s", desc="Deallocate TBE") {
    L1_TBEs.deallocate(address);
    unset_tbe();
  }

  action(u_writeDataToL1Cache, "u", desc="Write data to cache") {
    peek(responseIntraChipL1Network_in, ResponseMsg) {
      assert(is_valid(cache_entry));
      cache_entry.DataBlk := in_msg.DataBlk;
      cache_entry.Dirty := in_msg.Dirty;
    }
  }

  action(q_updateAckCount, "q", desc="Update ack count") {
    peek(responseIntraChipL1Network_in, ResponseMsg) {
      assert(is_valid(tbe));
      tbe.pendingAcks := tbe.pendingAcks - in_msg.AckCount;
      APPEND_TRANSITION_COMMENT(in_msg.AckCount);
      APPEND_TRANSITION_COMMENT(" p: ");
      APPEND_TRANSITION_COMMENT(tbe.pendingAcks);
    }
  }

  action(z_stall, "z", desc="Stall") {
  }

  action(ff_deallocateL1CacheBlock, "\f", desc="Deallocate L1 cache block.  Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
    if (L1DcacheMemory.isTagPresent(address)) {
      L1DcacheMemory.deallocate(address);
    } else {
      L1IcacheMemory.deallocate(address);
    }
    unset_cache_entry();
  }

  action(oo_allocateL1DCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B.") {
    if (is_invalid(cache_entry)) {
      set_cache_entry(L1DcacheMemory.allocate(address, new Entry));
    }
  }

  action(pp_allocateL1ICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B.") {
    if (is_invalid(cache_entry)) {
      set_cache_entry(L1IcacheMemory.allocate(address, new Entry));
    }
  }

  action(zz_recycleRequestQueue, "zz", desc="recycle L1 request queue") {
    requestIntraChipL1Network_in.recycle();
  }

  action(z_recycleMandatoryQueue, "\z", desc="recycle L1 request queue") {
    mandatoryQueue_in.recycle();
  }

  action(uu_profileInstMiss, "\ui", desc="Profile the demand miss") {
    peek(mandatoryQueue_in, RubyRequest) {
        L1IcacheMemory.profileMiss(in_msg);
    }
  }

  action(uu_profileDataMiss, "\ud", desc="Profile the demand miss") {
    peek(mandatoryQueue_in, RubyRequest) {
        L1DcacheMemory.profileMiss(in_msg);
    }
  }

  //*****************************************************
  // TRANSITIONS
  //*****************************************************

  // Transitions for Load/Store/Replacement/WriteBack from transient states
  transition({IS, IM, IS_I, M_I, SM}, {Load, Ifetch, Store, L1_Replacement}) {
    z_recycleMandatoryQueue;
  }

  // Transitions from Idle
  transition({NP,I}, L1_Replacement) {
    ff_deallocateL1CacheBlock;
  }

  transition({NP,I}, Load, IS) {
    oo_allocateL1DCacheBlock;
    i_allocateTBE;
    a_issueGETS;
    uu_profileDataMiss;
    k_popMandatoryQueue;
  }

  transition({NP,I}, Ifetch, IS) {
    pp_allocateL1ICacheBlock;
    i_allocateTBE;
    ai_issueGETINSTR;
    uu_profileInstMiss;
    k_popMandatoryQueue;
  }

  transition({NP,I}, Store, IM) {
    oo_allocateL1DCacheBlock;
    i_allocateTBE;
    b_issueGETX;
    uu_profileDataMiss;
    k_popMandatoryQueue;
  }

  transition({NP, I}, Inv) {
    fi_sendInvAck;
    l_popRequestQueue;
  }

  // Transitions from Shared
  transition(S, {Load,Ifetch}) {
    h_load_hit;
    k_popMandatoryQueue;
  }

  transition(S, Store, SM) {
    i_allocateTBE;
    c_issueUPGRADE;
    uu_profileDataMiss;
    k_popMandatoryQueue;
  }

  transition(S, L1_Replacement, I) {
    forward_eviction_to_cpu;
    ff_deallocateL1CacheBlock;
  }

  transition(S, Inv, I) {
    forward_eviction_to_cpu;
    fi_sendInvAck;
    l_popRequestQueue;
  }

  // Transitions from Exclusive

  transition(E, {Load, Ifetch}) {
    h_load_hit;
    k_popMandatoryQueue;
  }

  transition(E, Store, M) {
    hh_store_hit;
    k_popMandatoryQueue;
  }

  transition(E, L1_Replacement, M_I) {
    // silent E replacement??
    forward_eviction_to_cpu;
    i_allocateTBE;
    g_issuePUTX;   // send data, but hold in case forwarded request
    ff_deallocateL1CacheBlock;
  }

  transition(E, Inv, I) {
    // don't send data
    forward_eviction_to_cpu;
    fi_sendInvAck;
    l_popRequestQueue;
  }

  transition(E, Fwd_GETX, I) {
    forward_eviction_to_cpu;
    d_sendDataToRequestor;
    l_popRequestQueue;
  }

  transition(E, {Fwd_GETS, Fwd_GET_INSTR}, S) {
    d_sendDataToRequestor;
    d2_sendDataToL2;
    l_popRequestQueue;
  }

  // Transitions from Modified
  transition(M, {Load, Ifetch}) {
    h_load_hit;
    k_popMandatoryQueue;
  }

  transition(M, Store) {
    hh_store_hit;
    k_popMandatoryQueue;
  }

  transition(M, L1_Replacement, M_I) {
    forward_eviction_to_cpu;
    i_allocateTBE;
    g_issuePUTX;   // send data, but hold in case forwarded request
    ff_deallocateL1CacheBlock;
  }

  transition(M_I, WB_Ack, I) {
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(M, Inv, I) {
    forward_eviction_to_cpu;
    f_sendDataToL2;
    l_popRequestQueue;
  }

  transition(M_I, Inv, SINK_WB_ACK) {
    ft_sendDataToL2_fromTBE;
    l_popRequestQueue;
  }

  transition(M, Fwd_GETX, I) {
    forward_eviction_to_cpu;
    d_sendDataToRequestor;
    l_popRequestQueue;
  }

  transition(M, {Fwd_GETS, Fwd_GET_INSTR}, S) {
    d_sendDataToRequestor;
    d2_sendDataToL2;
    l_popRequestQueue;
  }

  transition(M_I, Fwd_GETX, SINK_WB_ACK) {
    dt_sendDataToRequestor_fromTBE;
    l_popRequestQueue;
  }

  transition(M_I, {Fwd_GETS, Fwd_GET_INSTR}, SINK_WB_ACK) {
    dt_sendDataToRequestor_fromTBE;
    d2t_sendDataToL2_fromTBE;
    l_popRequestQueue;
  }

  // Transitions from IS
  transition({IS, IS_I}, Inv, IS_I) {
    fi_sendInvAck;
    l_popRequestQueue;
  }

  transition(IS, Data_all_Acks, S) {
    u_writeDataToL1Cache;
    h_load_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(IS_I, Data_all_Acks, I) {
    u_writeDataToL1Cache;
    h_load_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(IS, DataS_fromL1, S) {
    u_writeDataToL1Cache;
    j_sendUnblock;
    h_load_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(IS_I, DataS_fromL1, I) {
    u_writeDataToL1Cache;
    j_sendUnblock;
    h_load_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  // directory is blocked when sending exclusive data
  transition(IS_I, Data_Exclusive, E) {
    u_writeDataToL1Cache;
    h_load_hit;
    jj_sendExclusiveUnblock;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(IS, Data_Exclusive, E) {
    u_writeDataToL1Cache;
    h_load_hit;
    jj_sendExclusiveUnblock;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  // Transitions from IM
  transition({IM, SM}, Inv, IM) {
    fi_sendInvAck;
    l_popRequestQueue;
  }

  transition(IM, Data, SM) {
    u_writeDataToL1Cache;
    q_updateAckCount;
    o_popIncomingResponseQueue;
  }

  transition(IM, Data_all_Acks, M) {
    u_writeDataToL1Cache;
    hh_store_hit;
    jj_sendExclusiveUnblock;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  // transitions from SM
  transition({SM, IM}, Ack) {
    q_updateAckCount;
    o_popIncomingResponseQueue;
  }

  transition(SM, Ack_all, M) {
    jj_sendExclusiveUnblock;
    hh_store_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(SINK_WB_ACK, {Load, Store, Ifetch, L1_Replacement}){
      z_recycleMandatoryQueue;
  }

  transition(SINK_WB_ACK, Inv){
    fi_sendInvAck;
    l_popRequestQueue;
  }

  transition(SINK_WB_ACK, WB_Ack){
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }
}