/*
 * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * $Id: MSI_MOSI_CMP_directory-L1cache.sm 1.10 05/01/19 15:55:40-06:00 beckmann@s0-28.cs.wisc.edu $
 *
 */


machine(L1Cache, "MSI Directory L1 Cache CMP") {

  // NODE L1 CACHE
  // From this node's L1 cache TO the network
  // a local L1 -> this L2 bank, currently ordered with directory forwarded requests
  MessageBuffer requestFromL1Cache, network="To", virtual_network="0", ordered="false";
  // a local L1 -> this L2 bank
  MessageBuffer responseFromL1Cache, network="To", virtual_network="3", ordered="false";
  MessageBuffer unblockFromL1Cache, network="To", virtual_network="4", ordered="false";


  // To this node's L1 cache FROM the network
  // a L2 bank -> this L1
  MessageBuffer requestToL1Cache, network="From", virtual_network="1", ordered="false";
  // a L2 bank -> this L1
  MessageBuffer responseToL1Cache, network="From", virtual_network="3", ordered="false";

  // STATES
  enumeration(State, desc="Cache states", default="L1Cache_State_I") {
    // Base states
    NP, desc="Not present in either cache";
    I, desc="a L1 cache entry Idle";
    S, desc="a L1 cache entry Shared";
    E, desc="a L1 cache entry Exclusive";
    M, desc="a L1 cache entry Modified", format="!b";

    // Transient States
    IS, desc="L1 idle, issued GETS, have not seen response yet";
    IM, desc="L1 idle, issued GETX, have not seen response yet";
    SM, desc="L1 idle, issued GETX, have not seen response yet";
    IS_I, desc="L1 idle, issued GETS, saw Inv before data because directory doesn't block on GETS hit";

    M_I, desc="L1 replacing, waiting for ACK";
    E_I, desc="L1 replacing, waiting for ACK";

  }

  // EVENTS
  enumeration(Event, desc="Cache events") {
    // L1 events
    Load,            desc="Load request from the home processor";
    Ifetch,          desc="I-fetch request from the home processor";
    Store,           desc="Store request from the home processor";

    Inv,           desc="Invalidate request from L2 bank";

    // internal generated request
    L1_Replacement,  desc="L1 Replacement", format="!r";

    // other requests
    Fwd_GETX,   desc="GETX from other processor";
    Fwd_GETS,   desc="GETS from other processor";
    Fwd_GET_INSTR,   desc="GET_INSTR from other processor";

    Data,       desc="Data for processor";
    Data_Exclusive,       desc="Data for processor";
    DataS_fromL1,       desc="data for GETS request, need to unblock directory";
    Data_all_Acks,       desc="Data for processor, all acks";

    Ack,        desc="Ack for processor";
    Ack_all,      desc="Last ack for processor";

    WB_Ack,        desc="Ack for replacement";
  }

  // TYPES

  // CacheEntry
  structure(Entry, desc="...", interface="AbstractCacheEntry" ) {
    State CacheState,        desc="cache state";
    DataBlock DataBlk,       desc="data for the block";
    bool Dirty, default="false",   desc="data is dirty";
  }

  // TBE fields
  structure(TBE, desc="...") {
    Address Address,              desc="Physical address for this TBE";
    State TBEState,        desc="Transient state";
    DataBlock DataBlk,                desc="Buffer for the data block";
    bool Dirty, default="false",   desc="data is dirty";
    bool isPrefetch,       desc="Set if this was caused by a prefetch";
    int pendingAcks, default="0", desc="number of pending acks";
  }

  external_type(CacheMemory) {
    bool cacheAvail(Address);
    Address cacheProbe(Address);
    void allocate(Address);
    void deallocate(Address);
    Entry lookup(Address);
    void changePermission(Address, AccessPermission);
    bool isTagPresent(Address);
  }

  external_type(TBETable) {
    TBE lookup(Address);
    void allocate(Address);
    void deallocate(Address);
    bool isPresent(Address);
  }

  TBETable L1_TBEs, template_hack="<L1Cache_TBE>";

  CacheMemory L1IcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1I"', abstract_chip_ptr="true";
  CacheMemory L1DcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1D"', abstract_chip_ptr="true";

  MessageBuffer mandatoryQueue, ordered="false", rank="100", abstract_chip_ptr="true";

  Sequencer sequencer, abstract_chip_ptr="true", constructor_hack="i";

  int cache_state_to_int(State state);

  // inclusive cache returns L1 entries only
  Entry getL1CacheEntry(Address addr), return_by_ref="yes" {
    if (L1DcacheMemory.isTagPresent(addr)) {
      return L1DcacheMemory[addr];
    } else {
      return L1IcacheMemory[addr];
    }
  }

  void changeL1Permission(Address addr, AccessPermission permission) {
    if (L1DcacheMemory.isTagPresent(addr)) {
      return L1DcacheMemory.changePermission(addr, permission);
    } else if(L1IcacheMemory.isTagPresent(addr)) {
      return L1IcacheMemory.changePermission(addr, permission);
    } else {
      error("cannot change permission, L1 block not present");
    }
  }

  bool isL1CacheTagPresent(Address addr) {
    return (L1DcacheMemory.isTagPresent(addr) || L1IcacheMemory.isTagPresent(addr));
  }

  State getState(Address addr) {
    if((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == true){
      DEBUG_EXPR(id);
      DEBUG_EXPR(addr);
    }
    assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);

    if(L1_TBEs.isPresent(addr)) {
      return L1_TBEs[addr].TBEState;
    } else if (isL1CacheTagPresent(addr)) {
      return getL1CacheEntry(addr).CacheState;
    }
    return State:NP;
  }


  void setState(Address addr, State state) {
    assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);

    // MUST CHANGE
    if(L1_TBEs.isPresent(addr)) {
      L1_TBEs[addr].TBEState := state;
    }

    if (isL1CacheTagPresent(addr)) {
      getL1CacheEntry(addr).CacheState := state;

      // Set permission
      if (state == State:I) {
        changeL1Permission(addr, AccessPermission:Invalid);
      } else if (state == State:S || state == State:E) {
        changeL1Permission(addr, AccessPermission:Read_Only);
      } else if (state == State:M) {
        changeL1Permission(addr, AccessPermission:Read_Write);
      } else {
        changeL1Permission(addr, AccessPermission:Busy);
      }
    }
  }

  Event mandatory_request_type_to_event(CacheRequestType type) {
    if (type == CacheRequestType:LD) {
      return Event:Load;
    } else if (type == CacheRequestType:IFETCH) {
      return Event:Ifetch;
    } else if ((type == CacheRequestType:ST) || (type == CacheRequestType:ATOMIC)) {
      return Event:Store;
    } else {
      error("Invalid CacheRequestType");
    }
  }

  GenericMachineType getNondirectHitMachType(Address addr, MachineID sender) {
    if (machineIDToMachineType(sender) == MachineType:L1Cache) {
      return GenericMachineType:L1Cache_wCC;  // NOTE direct L1 hits should not call this
    } else if (machineIDToMachineType(sender) == MachineType:L2Cache) {
      return GenericMachineType:L2Cache;
    } else {
      return ConvertMachToGenericMach(machineIDToMachineType(sender));
    }
  }



  out_port(requestIntraChipL1Network_out, RequestMsg, requestFromL1Cache);
  out_port(responseIntraChipL1Network_out, ResponseMsg, responseFromL1Cache);
  out_port(unblockNetwork_out, ResponseMsg, unblockFromL1Cache);

  // Response IntraChip L1 Network - response msg to this L1 cache
  in_port(responseIntraChipL1Network_in, ResponseMsg, responseToL1Cache) {
    if (responseIntraChipL1Network_in.isReady()) {
      peek(responseIntraChipL1Network_in, ResponseMsg) {
        assert(in_msg.Destination.isElement(machineID));
        if(in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) {
          trigger(Event:Data_Exclusive, in_msg.Address);
        } else if(in_msg.Type == CoherenceResponseType:DATA) {
          if ( (getState(in_msg.Address) == State:IS || getState(in_msg.Address) == State:IS_I) &&
                machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache ) {

              trigger(Event:DataS_fromL1, in_msg.Address);

          } else if ( (L1_TBEs[in_msg.Address].pendingAcks - in_msg.AckCount) == 0 ) {
            trigger(Event:Data_all_Acks, in_msg.Address);
          } else {
            trigger(Event:Data, in_msg.Address);
          }
        } else if (in_msg.Type == CoherenceResponseType:ACK) {
          if ( (L1_TBEs[in_msg.Address].pendingAcks - in_msg.AckCount) == 0 ) {
            trigger(Event:Ack_all, in_msg.Address);
          } else {
            trigger(Event:Ack, in_msg.Address);
          }
        } else if (in_msg.Type == CoherenceResponseType:WB_ACK) {
          trigger(Event:WB_Ack, in_msg.Address);
        } else {
          error("Invalid L1 response type");
        }
      }
    }
  }

  // Request InterChip network - request from this L1 cache to the shared L2
  in_port(requestIntraChipL1Network_in, RequestMsg, requestToL1Cache) {
    if(requestIntraChipL1Network_in.isReady()) {
      peek(requestIntraChipL1Network_in, RequestMsg) {
        assert(in_msg.Destination.isElement(machineID));
        if (in_msg.Type == CoherenceRequestType:INV) {
          trigger(Event:Inv, in_msg.Address);
        } else if (in_msg.Type == CoherenceRequestType:GETX || in_msg.Type == CoherenceRequestType:UPGRADE) {
          // upgrade transforms to GETX due to race
          trigger(Event:Fwd_GETX, in_msg.Address);
        } else if (in_msg.Type == CoherenceRequestType:GETS) {
          trigger(Event:Fwd_GETS, in_msg.Address);
        } else if (in_msg.Type == CoherenceRequestType:GET_INSTR) {
          trigger(Event:Fwd_GET_INSTR, in_msg.Address);
        } else {
          error("Invalid forwarded request type");
        }
      }
    }
  }

  // Mandatory Queue betweens Node's CPU and it's L1 caches
  in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") {
    if (mandatoryQueue_in.isReady()) {
      peek(mandatoryQueue_in, CacheMsg) {

        // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache

        if (in_msg.Type == CacheRequestType:IFETCH) {
          // ** INSTRUCTION ACCESS ***

          // Check to see if it is in the OTHER L1
          if (L1DcacheMemory.isTagPresent(in_msg.Address)) {
            // The block is in the wrong L1, put the request on the queue to the shared L2
            trigger(Event:L1_Replacement, in_msg.Address);
          }
          if (L1IcacheMemory.isTagPresent(in_msg.Address)) {
            // The tag matches for the L1, so the L1 asks the L2 for it.
            trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
          } else {
            if (L1IcacheMemory.cacheAvail(in_msg.Address)) {
              // L1 does't have the line, but we have space for it in the L1 so let's see if the L2 has it
              trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
            } else {
              // No room in the L1, so we need to make room in the L1
              trigger(Event:L1_Replacement, L1IcacheMemory.cacheProbe(in_msg.Address));
            }
          }
        } else {
          // *** DATA ACCESS ***

          // Check to see if it is in the OTHER L1
          if (L1IcacheMemory.isTagPresent(in_msg.Address)) {
            // The block is in the wrong L1, put the request on the queue to the shared L2
            trigger(Event:L1_Replacement, in_msg.Address);
          }
          if (L1DcacheMemory.isTagPresent(in_msg.Address)) {
            // The tag matches for the L1, so the L1 ask the L2 for it
            trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
          } else {
            if (L1DcacheMemory.cacheAvail(in_msg.Address)) {
              // L1 does't have the line, but we have space for it in the L1 let's see if the L2 has it
              trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
            } else {
              // No room in the L1, so we need to make room in the L1
              trigger(Event:L1_Replacement, L1DcacheMemory.cacheProbe(in_msg.Address));
            }
          }
        }
      }
    }
  }

  // ACTIONS
  action(a_issueGETS, "a", desc="Issue GETS") {
    peek(mandatoryQueue_in, CacheMsg) {
      enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:GETS;
        out_msg.Requestor := machineID;
        out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
        DEBUG_EXPR(address);
        DEBUG_EXPR(out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.Prefetch := in_msg.Prefetch;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(ai_issueGETINSTR, "ai", desc="Issue GETINSTR") {
    peek(mandatoryQueue_in, CacheMsg) {
      enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:GET_INSTR;
        out_msg.Requestor := machineID;
        out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
        DEBUG_EXPR(address);
        DEBUG_EXPR(out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.Prefetch := in_msg.Prefetch;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }


  action(b_issueGETX, "b", desc="Issue GETX") {
    peek(mandatoryQueue_in, CacheMsg) {
      enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:GETX;
        out_msg.Requestor := machineID;
        DEBUG_EXPR(machineID);
        out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
        DEBUG_EXPR(address);
        DEBUG_EXPR(out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.Prefetch := in_msg.Prefetch;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(c_issueUPGRADE, "c", desc="Issue GETX") {
    peek(mandatoryQueue_in, CacheMsg) {
      enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:UPGRADE;
        out_msg.Requestor := machineID;
        out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
        DEBUG_EXPR(address);
        DEBUG_EXPR(out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.Prefetch := in_msg.Prefetch;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(d_sendDataToRequestor, "d", desc="send data to requestor") {
    peek(requestIntraChipL1Network_in, RequestMsg) {
      enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
        out_msg.Dirty := getL1CacheEntry(address).Dirty;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(d2_sendDataToL2, "d2", desc="send data to the L2 cache because of M downgrade") {
    enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
      out_msg.Dirty := getL1CacheEntry(address).Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(dt_sendDataToRequestor_fromTBE, "dt", desc="send data to requestor") {
    peek(requestIntraChipL1Network_in, RequestMsg) {
      enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.DataBlk := L1_TBEs[address].DataBlk;
        out_msg.Dirty := L1_TBEs[address].Dirty;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(d2t_sendDataToL2_fromTBE, "d2t", desc="send data to the L2 cache") {
    enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := L1_TBEs[address].DataBlk;
      out_msg.Dirty := L1_TBEs[address].Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(e_sendAckToRequestor, "e", desc="send invalidate ack to requestor (could be L2 or L1)") {
    peek(requestIntraChipL1Network_in, RequestMsg) {
      enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Control;
      }
    }
  }

  action(f_sendDataToL2, "f", desc="send data to the L2 cache") {
    enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
      out_msg.Dirty := getL1CacheEntry(address).Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
      out_msg.MessageSize := MessageSizeType:Writeback_Data;
    }
  }

  action(ft_sendDataToL2_fromTBE, "ft", desc="send data to the L2 cache") {
    enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := L1_TBEs[address].DataBlk;
      out_msg.Dirty := L1_TBEs[address].Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
      out_msg.MessageSize := MessageSizeType:Writeback_Data;
    }
  }

  action(fi_sendInvAck, "fi", desc="send data to the L2 cache") {
    peek(requestIntraChipL1Network_in, RequestMsg) {
      enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") {
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Control;
        out_msg.AckCount := 1;
      }
    }
  }


  action(g_issuePUTX, "g", desc="send data to the L2 cache") {
    enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_RESPONSE_LATENCY") {
      out_msg.Address := address;
      out_msg.Type := CoherenceRequestType:PUTX;
      out_msg.DataBlk := getL1CacheEntry(address).DataBlk;
      out_msg.Dirty := getL1CacheEntry(address).Dirty;
      out_msg.Requestor:= machineID;
      out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
      if (getL1CacheEntry(address).Dirty) {
        out_msg.MessageSize := MessageSizeType:Writeback_Data;
      } else {
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(j_sendUnblock, "j", desc="send unblock to the L2 cache") {
    enqueue(unblockNetwork_out, ResponseMsg, latency="1") {
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:UNBLOCK;
      out_msg.Sender := machineID;
      out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
      out_msg.MessageSize := MessageSizeType:Response_Control;
    }
  }

  action(jj_sendExclusiveUnblock, "\j", desc="send unblock to the L2 cache") {
    enqueue(unblockNetwork_out, ResponseMsg, latency="1") {
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:EXCLUSIVE_UNBLOCK;
      out_msg.Sender := machineID;
      out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID));
      out_msg.MessageSize := MessageSizeType:Response_Control;
    }
  }



  action(h_load_hit, "h", desc="If not prefetch, notify sequencer the load completed.") {
    DEBUG_EXPR(getL1CacheEntry(address).DataBlk);
    sequencer.readCallback(address, getL1CacheEntry(address).DataBlk);
  }

  action(x_external_load_hit, "x", desc="Notify sequencer the load completed.") {
    peek(responseIntraChipL1Network_in, ResponseMsg) {
      sequencer.readCallback(address, getL1CacheEntry(address).DataBlk, getNondirectHitMachType(in_msg.Address, in_msg.Sender), PrefetchBit:No);
    }
  }


  action(hh_store_hit, "\h", desc="If not prefetch, notify sequencer that store completed.") {
    sequencer.writeCallback(address, getL1CacheEntry(address).DataBlk);
    getL1CacheEntry(address).Dirty := true;
  }

  action(xx_external_store_hit, "\x", desc="Notify sequencer that store completed.") {
    peek(responseIntraChipL1Network_in, ResponseMsg) {
      sequencer.writeCallback(address, getL1CacheEntry(address).DataBlk, getNondirectHitMachType(in_msg.Address, in_msg.Sender), PrefetchBit:No);
    }
    getL1CacheEntry(address).Dirty := true;
  }


  action(i_allocateTBE, "i", desc="Allocate TBE (isPrefetch=0, number of invalidates=0)") {
    check_allocate(L1_TBEs);
    L1_TBEs.allocate(address);
    L1_TBEs[address].isPrefetch := false;
    L1_TBEs[address].Dirty := getL1CacheEntry(address).Dirty;
    L1_TBEs[address].DataBlk := getL1CacheEntry(address).DataBlk;
  }

  action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
    mandatoryQueue_in.dequeue();
  }

  action(l_popRequestQueue, "l", desc="Pop incoming request queue and profile the delay within this virtual network") {
    profileMsgDelay(2, requestIntraChipL1Network_in.dequeue_getDelayCycles());
  }

  action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue and profile the delay within this virtual network") {
    profileMsgDelay(3, responseIntraChipL1Network_in.dequeue_getDelayCycles());
  }

  action(s_deallocateTBE, "s", desc="Deallocate TBE") {
    L1_TBEs.deallocate(address);
  }

  action(u_writeDataToL1Cache, "u", desc="Write data to cache") {
    peek(responseIntraChipL1Network_in, ResponseMsg) {
      getL1CacheEntry(address).DataBlk := in_msg.DataBlk;
      getL1CacheEntry(address).Dirty := in_msg.Dirty;
    }
  }

  action(q_updateAckCount, "q", desc="Update ack count") {
    peek(responseIntraChipL1Network_in, ResponseMsg) {
      L1_TBEs[address].pendingAcks := L1_TBEs[address].pendingAcks - in_msg.AckCount;
      APPEND_TRANSITION_COMMENT(in_msg.AckCount);
      APPEND_TRANSITION_COMMENT(" p: ");
      APPEND_TRANSITION_COMMENT(L1_TBEs[address].pendingAcks);
    }
  }

  action(z_stall, "z", desc="Stall") {
  }

  action(ff_deallocateL1CacheBlock, "\f", desc="Deallocate L1 cache block.  Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
    if (L1DcacheMemory.isTagPresent(address)) {
      L1DcacheMemory.deallocate(address);
    } else {
      L1IcacheMemory.deallocate(address);
    }
  }

  action(oo_allocateL1DCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B.") {
    if (L1DcacheMemory.isTagPresent(address) == false) {
      L1DcacheMemory.allocate(address);
    }
  }

  action(pp_allocateL1ICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B.") {
    if (L1IcacheMemory.isTagPresent(address) == false) {
      L1IcacheMemory.allocate(address);
    }
  }

  action(zz_recycleRequestQueue, "zz", desc="recycle L1 request queue") {
    requestIntraChipL1Network_in.recycle();
  }

  action(z_recycleMandatoryQueue, "\z", desc="recycle L1 request queue") {
    mandatoryQueue_in.recycle();
  }


  //*****************************************************
  // TRANSITIONS
  //*****************************************************

  // Transitions for Load/Store/Replacement/WriteBack from transient states
  transition({IS, IM, IS_I, M_I, E_I, SM}, {Load, Ifetch, Store, L1_Replacement}) {
    z_recycleMandatoryQueue;
  }

  // Transitions from Idle
  transition({NP,I}, L1_Replacement) {
    ff_deallocateL1CacheBlock;
  }

  transition({NP,I}, Load, IS) {
    oo_allocateL1DCacheBlock;
    i_allocateTBE;
    a_issueGETS;
    k_popMandatoryQueue;
  }

  transition({NP,I}, Ifetch, IS) {
    pp_allocateL1ICacheBlock;
    i_allocateTBE;
    ai_issueGETINSTR;
    k_popMandatoryQueue;
  }

  transition({NP,I}, Store, IM) {
    oo_allocateL1DCacheBlock;
    i_allocateTBE;
    b_issueGETX;
    k_popMandatoryQueue;
  }

  transition({NP, I}, Inv) {
    fi_sendInvAck;
    l_popRequestQueue;
  }

  // Transitions from Shared
  transition(S, {Load,Ifetch}) {
    h_load_hit;
    k_popMandatoryQueue;
  }

  transition(S, Store, SM) {
    i_allocateTBE;
    c_issueUPGRADE;
    k_popMandatoryQueue;
  }

  transition(S, L1_Replacement, I) {
    ff_deallocateL1CacheBlock;
  }

  transition(S, Inv, I) {
    fi_sendInvAck;
    l_popRequestQueue;
  }

  // Transitions from Exclusive

  transition(E, {Load, Ifetch}) {
    h_load_hit;
    k_popMandatoryQueue;
  }

  transition(E, Store, M) {
    hh_store_hit;
    k_popMandatoryQueue;
  }

  transition(E, L1_Replacement, M_I) {
    // silent E replacement??
    i_allocateTBE;
    g_issuePUTX;   // send data, but hold in case forwarded request
    ff_deallocateL1CacheBlock;
  }

  transition(E, Inv, I) {
    // don't send data
    fi_sendInvAck;
    l_popRequestQueue;
  }

  transition(E, Fwd_GETX, I) {
    d_sendDataToRequestor;
    l_popRequestQueue;
  }

  transition(E, {Fwd_GETS, Fwd_GET_INSTR}, S) {
    d_sendDataToRequestor;
    d2_sendDataToL2;
    l_popRequestQueue;
  }

  // Transitions from Modified
  transition(M, {Load, Ifetch}) {
    h_load_hit;
    k_popMandatoryQueue;
  }

  transition(M, Store) {
    hh_store_hit;
    k_popMandatoryQueue;
  }

  transition(M, L1_Replacement, M_I) {
    i_allocateTBE;
    g_issuePUTX;   // send data, but hold in case forwarded request
    ff_deallocateL1CacheBlock;
  }

  transition(M_I, WB_Ack, I) {
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(M, Inv, I) {
    f_sendDataToL2;
    l_popRequestQueue;
  }

  transition(M_I, Inv, I) {
    ft_sendDataToL2_fromTBE;
    s_deallocateTBE;
    l_popRequestQueue;
  }

  transition(M, Fwd_GETX, I) {
    d_sendDataToRequestor;
    l_popRequestQueue;
  }

  transition(M, {Fwd_GETS, Fwd_GET_INSTR}, S) {
    d_sendDataToRequestor;
    d2_sendDataToL2;
    l_popRequestQueue;
  }

  transition(M_I, Fwd_GETX, I) {
    dt_sendDataToRequestor_fromTBE;
    s_deallocateTBE;
    l_popRequestQueue;
  }

  transition(M_I, {Fwd_GETS, Fwd_GET_INSTR}, I) {
    dt_sendDataToRequestor_fromTBE;
    d2t_sendDataToL2_fromTBE;
    s_deallocateTBE;
    l_popRequestQueue;
  }

  // Transitions from IS
  transition({IS, IS_I}, Inv, IS_I) {
    fi_sendInvAck;
    l_popRequestQueue;
  }

  transition(IS, Data_all_Acks, S) {
    u_writeDataToL1Cache;
    x_external_load_hit;
    s_deallocateTBE;
    j_sendUnblock;
    o_popIncomingResponseQueue;
  }

  transition(IS_I, Data_all_Acks, I) {
    u_writeDataToL1Cache;
    x_external_load_hit;
    s_deallocateTBE;
    j_sendUnblock;
    o_popIncomingResponseQueue;
  }


  transition(IS, DataS_fromL1, S) {
    u_writeDataToL1Cache;
    j_sendUnblock;
    x_external_load_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(IS_I, DataS_fromL1, I) {
    u_writeDataToL1Cache;
    j_sendUnblock;
    x_external_load_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  // directory is blocked when sending exclusive data
  transition(IS_I, Data_Exclusive, E) {
    u_writeDataToL1Cache;
    x_external_load_hit;
    jj_sendExclusiveUnblock;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(IS, Data_Exclusive, E) {
    u_writeDataToL1Cache;
    x_external_load_hit;
    jj_sendExclusiveUnblock;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  // Transitions from IM
  transition({IM, SM}, Inv, IM) {
    fi_sendInvAck;
    l_popRequestQueue;
  }

  transition(IM, Data, SM) {
    u_writeDataToL1Cache;
    q_updateAckCount;
    o_popIncomingResponseQueue;
  }

  transition(IM, Data_all_Acks, M) {
    u_writeDataToL1Cache;
    xx_external_store_hit;
    jj_sendExclusiveUnblock;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  // transitions from SM
  transition({SM, IM}, Ack) {
    q_updateAckCount;
    o_popIncomingResponseQueue;
  }

  transition(SM, Ack_all, M) {
    jj_sendExclusiveUnblock;
    xx_external_store_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }
}