/*
 * Copyright (c) 1999-2013 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

machine(MachineType:L1Cache, "MESI Directory L1 Cache CMP")
 : CacheMemory * cache;
   int l2_select_num_bits;
   Cycles l1_request_latency := 2;
   Cycles l1_response_latency := 2;
   Cycles to_l2_latency := 1;

   // Message Buffers between the L1 and the L0 Cache
   // From the L1 cache to the L0 cache
   MessageBuffer * bufferToL0, network="To";

   // From the L0 cache to the L1 cache
   MessageBuffer * bufferFromL0, network="From";

   // Message queue from this L1 cache TO the network / L2
   MessageBuffer * requestToL2, network="To", virtual_network="0",
        vnet_type="request";

   MessageBuffer * responseToL2, network="To", virtual_network="1",
        vnet_type="response";
   MessageBuffer * unblockToL2, network="To", virtual_network="2",
        vnet_type="unblock";

   // To this L1 cache FROM the network / L2
   MessageBuffer * requestFromL2, network="From", virtual_network="2",
        vnet_type="request";
   MessageBuffer * responseFromL2, network="From", virtual_network="1",
        vnet_type="response";

{
  // STATES
  state_declaration(State, desc="Cache states", default="L1Cache_State_I") {
    // Base states
    I, AccessPermission:Invalid, desc="a L1 cache entry Idle";
    S, AccessPermission:Read_Only, desc="a L1 cache entry Shared";
    SS, AccessPermission:Read_Only, desc="a L1 cache entry Shared";
    E, AccessPermission:Read_Only, desc="a L1 cache entry Exclusive";
    EE, AccessPermission:Read_Write, desc="a L1 cache entry Exclusive";
    M, AccessPermission:Maybe_Stale, desc="a L1 cache entry Modified", format="!b";
    MM, AccessPermission:Read_Write, desc="a L1 cache entry Modified", format="!b";

    // Transient States
    IS, AccessPermission:Busy, desc="L1 idle, issued GETS, have not seen response yet";
    IM, AccessPermission:Busy, desc="L1 idle, issued GETX, have not seen response yet";
    SM, AccessPermission:Read_Only, desc="L1 idle, issued GETX, have not seen response yet";
    M_I, AccessPermission:Busy, desc="L1 replacing, waiting for ACK";
    SINK_WB_ACK, AccessPermission:Busy, desc="This is to sink WB_Acks from L2";

    // For all of the following states, invalidate
    // message has been sent to L0 cache. The response
    // from the L0 cache has not been seen yet.
    S_IL0, AccessPermission:Busy;
    E_IL0, AccessPermission:Busy;
    M_IL0, AccessPermission:Busy;
    MM_IL0, AccessPermission:Read_Write;
    SM_IL0, AccessPermission:Busy;
  }

  // EVENTS
  enumeration(Event, desc="Cache events") {
    // Requests from the L0 cache
    Load,            desc="Load request";
    Store,           desc="Store request";
    WriteBack,       desc="Writeback request";

    // Responses from the L0 Cache
    // L0 cache received the invalidation message
    // and has sent the data.
    L0_DataAck;

    Inv,           desc="Invalidate request from L2 bank";

    // internal generated request
    // Invalidate the line in L0 due to own requirements
    L0_Invalidate_Own;
    // Invalidate the line in L0 due to some other cache's requirements
    L0_Invalidate_Else;
    // Invalidate the line in the cache due to some one else / space needs.
    L1_Replacement;

    // other requests
    Fwd_GETX,   desc="GETX from other processor";
    Fwd_GETS,   desc="GETS from other processor";

    Data,       desc="Data for processor";
    Data_Exclusive,       desc="Data for processor";
    DataS_fromL1,       desc="data for GETS request, need to unblock directory";
    Data_all_Acks,       desc="Data for processor, all acks";

    L0_Ack,        desc="Ack for processor";
    Ack,        desc="Ack for processor";
    Ack_all,      desc="Last ack for processor";

    WB_Ack,        desc="Ack for replacement";
  }

  // TYPES

  // CacheEntry
  structure(Entry, desc="...", interface="AbstractCacheEntry" ) {
    State CacheState,        desc="cache state";
    DataBlock DataBlk,       desc="data for the block";
    bool Dirty, default="false",   desc="data is dirty";
  }

  // TBE fields
  structure(TBE, desc="...") {
    Addr addr,              desc="Physical address for this TBE";
    State TBEState,        desc="Transient state";
    DataBlock DataBlk,                desc="Buffer for the data block";
    bool Dirty, default="false",   desc="data is dirty";
    int pendingAcks, default="0", desc="number of pending acks";
  }

  structure(TBETable, external="yes") {
    TBE lookup(Addr);
    void allocate(Addr);
    void deallocate(Addr);
    bool isPresent(Addr);
  }

  TBETable TBEs, template="<L1Cache_TBE>", constructor="m_number_of_TBEs";

  int l2_select_low_bit, default="RubySystem::getBlockSizeBits()";

  Tick clockEdge();
  Cycles ticksToCycles(Tick t);
  void set_cache_entry(AbstractCacheEntry a);
  void unset_cache_entry();
  void set_tbe(TBE a);
  void unset_tbe();
  void wakeUpBuffers(Addr a);
  void wakeUpAllBuffers(Addr a);
  void profileMsgDelay(int virtualNetworkType, Cycles c);

  // inclusive cache returns L1 entries only
  Entry getCacheEntry(Addr addr), return_by_pointer="yes" {
    Entry cache_entry := static_cast(Entry, "pointer", cache[addr]);
    return cache_entry;
  }

  State getState(TBE tbe, Entry cache_entry, Addr addr) {
    if(is_valid(tbe)) {
      return tbe.TBEState;
    } else if (is_valid(cache_entry)) {
      return cache_entry.CacheState;
    }
    return State:I;
  }

  void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
    // MUST CHANGE
    if(is_valid(tbe)) {
      tbe.TBEState := state;
    }

    if (is_valid(cache_entry)) {
      cache_entry.CacheState := state;
    }
  }

  AccessPermission getAccessPermission(Addr addr) {
    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(tbe.TBEState));
      return L1Cache_State_to_permission(tbe.TBEState);
    }

    Entry cache_entry := getCacheEntry(addr);
    if(is_valid(cache_entry)) {
      DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(cache_entry.CacheState));
      return L1Cache_State_to_permission(cache_entry.CacheState);
    }

    DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent);
    return AccessPermission:NotPresent;
  }

  void functionalRead(Addr addr, Packet *pkt) {
    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      testAndRead(addr, tbe.DataBlk, pkt);
    } else {
      testAndRead(addr, getCacheEntry(addr).DataBlk, pkt);
    }
  }

  int functionalWrite(Addr addr, Packet *pkt) {
    int num_functional_writes := 0;

    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      num_functional_writes := num_functional_writes +
        testAndWrite(addr, tbe.DataBlk, pkt);
      return num_functional_writes;
    }

    num_functional_writes := num_functional_writes +
        testAndWrite(addr, getCacheEntry(addr).DataBlk, pkt);
    return num_functional_writes;
  }

  void setAccessPermission(Entry cache_entry, Addr addr, State state) {
    if (is_valid(cache_entry)) {
      cache_entry.changePermission(L1Cache_State_to_permission(state));
    }
  }

  Event mandatory_request_type_to_event(CoherenceClass type) {
    if (type == CoherenceClass:GETS) {
      return Event:Load;
    } else if ((type == CoherenceClass:GETX) ||
               (type == CoherenceClass:UPGRADE)) {
      return Event:Store;
    } else if (type == CoherenceClass:PUTX) {
      return Event:WriteBack;
    } else {
      error("Invalid RequestType");
    }
  }

  int getPendingAcks(TBE tbe) {
    return tbe.pendingAcks;
  }

  bool inL0Cache(State state) {
    if (state == State:S || state == State:E || state == State:M ||
        state == State:S_IL0 || state == State:E_IL0 ||
        state == State:M_IL0 || state == State:SM_IL0) {
        return true;
    }

    return false;
  }

  out_port(requestNetwork_out, RequestMsg, requestToL2);
  out_port(responseNetwork_out, ResponseMsg, responseToL2);
  out_port(unblockNetwork_out, ResponseMsg, unblockToL2);
  out_port(bufferToL0_out, CoherenceMsg, bufferToL0);

  // Response From the L2 Cache to this L1 cache
  in_port(responseNetwork_in, ResponseMsg, responseFromL2, rank = 3) {
    if (responseNetwork_in.isReady(clockEdge())) {
      peek(responseNetwork_in, ResponseMsg) {
        assert(in_msg.Destination.isElement(machineID));

        Entry cache_entry := getCacheEntry(in_msg.addr);
        TBE tbe := TBEs[in_msg.addr];

        if(in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) {
          trigger(Event:Data_Exclusive, in_msg.addr, cache_entry, tbe);
        } else if(in_msg.Type == CoherenceResponseType:DATA) {
          if (getState(tbe, cache_entry, in_msg.addr) == State:IS &&
              machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache) {

              trigger(Event:DataS_fromL1, in_msg.addr, cache_entry, tbe);

          } else if ( (getPendingAcks(tbe) - in_msg.AckCount) == 0 ) {
            trigger(Event:Data_all_Acks, in_msg.addr, cache_entry, tbe);
          } else {
            trigger(Event:Data, in_msg.addr, cache_entry, tbe);
          }
        } else if (in_msg.Type == CoherenceResponseType:ACK) {
          if ( (getPendingAcks(tbe) - in_msg.AckCount) == 0 ) {
            trigger(Event:Ack_all, in_msg.addr, cache_entry, tbe);
          } else {
            trigger(Event:Ack, in_msg.addr, cache_entry, tbe);
          }
        } else if (in_msg.Type == CoherenceResponseType:WB_ACK) {
          trigger(Event:WB_Ack, in_msg.addr, cache_entry, tbe);
        } else {
          error("Invalid L1 response type");
        }
      }
    }
  }

  // Request to this L1 cache from the shared L2
  in_port(requestNetwork_in, RequestMsg, requestFromL2, rank = 2) {
    if(requestNetwork_in.isReady(clockEdge())) {
      peek(requestNetwork_in, RequestMsg) {
        assert(in_msg.Destination.isElement(machineID));
        Entry cache_entry := getCacheEntry(in_msg.addr);
        TBE tbe := TBEs[in_msg.addr];

        if (in_msg.Type == CoherenceRequestType:INV) {
            if (is_valid(cache_entry) && inL0Cache(cache_entry.CacheState)) {
                trigger(Event:L0_Invalidate_Else, in_msg.addr,
                        cache_entry, tbe);
            }  else {
                trigger(Event:Inv, in_msg.addr, cache_entry, tbe);
            }
        } else if (in_msg.Type == CoherenceRequestType:GETX ||
                   in_msg.Type == CoherenceRequestType:UPGRADE) {
            if (is_valid(cache_entry) && inL0Cache(cache_entry.CacheState)) {
                trigger(Event:L0_Invalidate_Else, in_msg.addr,
                        cache_entry, tbe);
            } else {
                trigger(Event:Fwd_GETX, in_msg.addr, cache_entry, tbe);
            }
        } else if (in_msg.Type == CoherenceRequestType:GETS) {
            if (is_valid(cache_entry) && inL0Cache(cache_entry.CacheState)) {
                trigger(Event:L0_Invalidate_Else, in_msg.addr,
                        cache_entry, tbe);
            } else {
                trigger(Event:Fwd_GETS, in_msg.addr, cache_entry, tbe);
            }
        } else {
          error("Invalid forwarded request type");
        }
      }
    }
  }

  // Requests to this L1 cache from the L0 cache.
  in_port(messageBufferFromL0_in, CoherenceMsg, bufferFromL0, rank = 0) {
    if (messageBufferFromL0_in.isReady(clockEdge())) {
      peek(messageBufferFromL0_in, CoherenceMsg) {
        Entry cache_entry := getCacheEntry(in_msg.addr);
        TBE tbe := TBEs[in_msg.addr];

        if(in_msg.Class == CoherenceClass:INV_DATA) {
            trigger(Event:L0_DataAck, in_msg.addr, cache_entry, tbe);
        }  else if (in_msg.Class == CoherenceClass:INV_ACK) {
            trigger(Event:L0_Ack, in_msg.addr, cache_entry, tbe);
        }  else {
            if (is_valid(cache_entry)) {
                trigger(mandatory_request_type_to_event(in_msg.Class),
                        in_msg.addr, cache_entry, tbe);
            } else {
                if (cache.cacheAvail(in_msg.addr)) {
                    // L1 does't have the line, but we have space for it
                    // in the L1 let's see if the L2 has it
                    trigger(mandatory_request_type_to_event(in_msg.Class),
                            in_msg.addr, cache_entry, tbe);
                } else {
                    // No room in the L1, so we need to make room in the L1
                    Entry victim_entry :=
                        getCacheEntry(cache.cacheProbe(in_msg.addr));
                    TBE victim_tbe := TBEs[cache.cacheProbe(in_msg.addr)];

                    if (is_valid(victim_entry) && inL0Cache(victim_entry.CacheState)) {
                        trigger(Event:L0_Invalidate_Own,
                                cache.cacheProbe(in_msg.addr),
                                victim_entry, victim_tbe);
                    }  else {
                        trigger(Event:L1_Replacement,
                                cache.cacheProbe(in_msg.addr),
                                victim_entry, victim_tbe);
                    }
                }
            }
        }
      }
    }
  }

  // ACTIONS
  action(a_issueGETS, "a", desc="Issue GETS") {
    peek(messageBufferFromL0_in, CoherenceMsg) {
      enqueue(requestNetwork_out, RequestMsg, l1_request_latency) {
        out_msg.addr := address;
        out_msg.Type := CoherenceRequestType:GETS;
        out_msg.Requestor := machineID;
        out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                          l2_select_low_bit, l2_select_num_bits, clusterID));
        DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
                address, out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(b_issueGETX, "b", desc="Issue GETX") {
    peek(messageBufferFromL0_in, CoherenceMsg) {
      enqueue(requestNetwork_out, RequestMsg, l1_request_latency) {
        out_msg.addr := address;
        out_msg.Type := CoherenceRequestType:GETX;
        out_msg.Requestor := machineID;
        DPRINTF(RubySlicc, "%s\n", machineID);
        out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                          l2_select_low_bit, l2_select_num_bits, clusterID));
        DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
                address, out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(c_issueUPGRADE, "c", desc="Issue GETX") {
    peek(messageBufferFromL0_in, CoherenceMsg) {
      enqueue(requestNetwork_out, RequestMsg, l1_request_latency) {
        out_msg.addr := address;
        out_msg.Type := CoherenceRequestType:UPGRADE;
        out_msg.Requestor := machineID;
        out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                          l2_select_low_bit, l2_select_num_bits, clusterID));
        DPRINTF(RubySlicc, "address: %#x, destination: %s\n",
                address, out_msg.Destination);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(d_sendDataToRequestor, "d", desc="send data to requestor") {
    peek(requestNetwork_in, RequestMsg) {
      enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
        assert(is_valid(cache_entry));
        out_msg.addr := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.DataBlk := cache_entry.DataBlk;
        out_msg.Dirty := cache_entry.Dirty;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(d2_sendDataToL2, "d2", desc="send data to the L2 cache because of M downgrade") {
    enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
      assert(is_valid(cache_entry));
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := cache_entry.DataBlk;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                          l2_select_low_bit, l2_select_num_bits, clusterID));
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(dt_sendDataToRequestor_fromTBE, "dt", desc="send data to requestor") {
    peek(requestNetwork_in, RequestMsg) {
      enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
        assert(is_valid(tbe));
        out_msg.addr := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.DataBlk := tbe.DataBlk;
        out_msg.Dirty := tbe.Dirty;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(d2t_sendDataToL2_fromTBE, "d2t", desc="send data to the L2 cache") {
    enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
      assert(is_valid(tbe));
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := tbe.DataBlk;
      out_msg.Dirty := tbe.Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                          l2_select_low_bit, l2_select_num_bits, clusterID));
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(e_sendAckToRequestor, "e", desc="send invalidate ack to requestor (could be L2 or L1)") {
    peek(requestNetwork_in, RequestMsg) {
      enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
        out_msg.addr := address;
        out_msg.Type := CoherenceResponseType:ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Control;
      }
    }
  }

  action(f_sendDataToL2, "f", desc="send data to the L2 cache") {
    enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
      assert(is_valid(cache_entry));
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := cache_entry.DataBlk;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                          l2_select_low_bit, l2_select_num_bits, clusterID));
      out_msg.MessageSize := MessageSizeType:Writeback_Data;
    }
  }

  action(ft_sendDataToL2_fromTBE, "ft", desc="send data to the L2 cache") {
    enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
      assert(is_valid(tbe));
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.DataBlk := tbe.DataBlk;
      out_msg.Dirty := tbe.Dirty;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                          l2_select_low_bit, l2_select_num_bits, clusterID));
      out_msg.MessageSize := MessageSizeType:Writeback_Data;
    }
  }

  action(fi_sendInvAck, "fi", desc="send data to the L2 cache") {
    peek(requestNetwork_in, RequestMsg) {
      enqueue(responseNetwork_out, ResponseMsg, l1_response_latency) {
        out_msg.addr := address;
        out_msg.Type := CoherenceResponseType:ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Control;
        out_msg.AckCount := 1;
      }
    }
  }

  action(forward_eviction_to_L0, "\cc", desc="sends eviction information to the processor") {
      enqueue(bufferToL0_out, CoherenceMsg, l1_request_latency) {
          out_msg.addr := address;
          out_msg.Class := CoherenceClass:INV;
          out_msg.Sender := machineID;
          out_msg.Dest := createMachineID(MachineType:L0Cache, version);
          out_msg.MessageSize := MessageSizeType:Control;
      }
  }

  action(g_issuePUTX, "g", desc="send data to the L2 cache") {
    enqueue(requestNetwork_out, RequestMsg, l1_response_latency) {
      assert(is_valid(cache_entry));
      out_msg.addr := address;
      out_msg.Type := CoherenceRequestType:PUTX;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.Requestor:= machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                          l2_select_low_bit, l2_select_num_bits, clusterID));
      if (cache_entry.Dirty) {
        out_msg.MessageSize := MessageSizeType:Writeback_Data;
        out_msg.DataBlk := cache_entry.DataBlk;
      } else {
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(j_sendUnblock, "j", desc="send unblock to the L2 cache") {
    enqueue(unblockNetwork_out, ResponseMsg, to_l2_latency) {
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:UNBLOCK;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                          l2_select_low_bit, l2_select_num_bits, clusterID));
      out_msg.MessageSize := MessageSizeType:Response_Control;
      DPRINTF(RubySlicc, "%#x\n", address);
    }
  }

  action(jj_sendExclusiveUnblock, "\j", desc="send unblock to the L2 cache") {
    enqueue(unblockNetwork_out, ResponseMsg, to_l2_latency) {
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:EXCLUSIVE_UNBLOCK;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache,
                          l2_select_low_bit, l2_select_num_bits, clusterID));
      out_msg.MessageSize := MessageSizeType:Response_Control;
      DPRINTF(RubySlicc, "%#x\n", address);

    }
  }

  action(h_data_to_l0, "h", desc="If not prefetch, send data to the L0 cache.") {
      enqueue(bufferToL0_out, CoherenceMsg, l1_response_latency) {
          assert(is_valid(cache_entry));

          out_msg.addr := address;
          out_msg.Class := CoherenceClass:DATA;
          out_msg.Sender := machineID;
          out_msg.Dest := createMachineID(MachineType:L0Cache, version);
          out_msg.DataBlk := cache_entry.DataBlk;
          out_msg.MessageSize := MessageSizeType:Response_Data;
      }
  }

  action(hh_xdata_to_l0, "\h", desc="If not prefetch, notify sequencer that store completed.") {
      enqueue(bufferToL0_out, CoherenceMsg, l1_response_latency) {
          assert(is_valid(cache_entry));

          out_msg.addr := address;
          out_msg.Class := CoherenceClass:DATA_EXCLUSIVE;
          out_msg.Sender := machineID;
          out_msg.Dest := createMachineID(MachineType:L0Cache, version);
          out_msg.DataBlk := cache_entry.DataBlk;
          out_msg.Dirty := cache_entry.Dirty;
          out_msg.MessageSize := MessageSizeType:Response_Data;

          //cache_entry.Dirty := true;
      }
  }

  action(i_allocateTBE, "i", desc="Allocate TBE (number of invalidates=0)") {
    check_allocate(TBEs);
    assert(is_valid(cache_entry));
    TBEs.allocate(address);
    set_tbe(TBEs[address]);
    tbe.Dirty := cache_entry.Dirty;
    tbe.DataBlk := cache_entry.DataBlk;
  }

  action(k_popL0RequestQueue, "k", desc="Pop mandatory queue.") {
    messageBufferFromL0_in.dequeue(clockEdge());
  }

  action(l_popL2RequestQueue, "l",
         desc="Pop incoming request queue and profile the delay within this virtual network") {
    Tick delay := requestNetwork_in.dequeue(clockEdge());
    profileMsgDelay(2, ticksToCycles(delay));
  }

  action(o_popL2ResponseQueue, "o",
         desc="Pop Incoming Response queue and profile the delay within this virtual network") {
    Tick delay := responseNetwork_in.dequeue(clockEdge());
    profileMsgDelay(1, ticksToCycles(delay));
  }

  action(s_deallocateTBE, "s", desc="Deallocate TBE") {
    TBEs.deallocate(address);
    unset_tbe();
  }

  action(u_writeDataFromL0Request, "ureql0", desc="Write data to cache") {
    peek(messageBufferFromL0_in, CoherenceMsg) {
      assert(is_valid(cache_entry));
      if (in_msg.Dirty) {
          cache_entry.DataBlk := in_msg.DataBlk;
          cache_entry.Dirty := in_msg.Dirty;
      }
    }
  }

  action(u_writeDataFromL2Response, "uresl2", desc="Write data to cache") {
    peek(responseNetwork_in, ResponseMsg) {
      assert(is_valid(cache_entry));
      cache_entry.DataBlk := in_msg.DataBlk;
    }
  }

  action(u_writeDataFromL0Response, "uresl0", desc="Write data to cache") {
    peek(messageBufferFromL0_in, CoherenceMsg) {
      assert(is_valid(cache_entry));
      if (in_msg.Dirty) {
          cache_entry.DataBlk := in_msg.DataBlk;
          cache_entry.Dirty := in_msg.Dirty;
      }
    }
  }

  action(q_updateAckCount, "q", desc="Update ack count") {
    peek(responseNetwork_in, ResponseMsg) {
      assert(is_valid(tbe));
      tbe.pendingAcks := tbe.pendingAcks - in_msg.AckCount;
      APPEND_TRANSITION_COMMENT(in_msg.AckCount);
      APPEND_TRANSITION_COMMENT(" p: ");
      APPEND_TRANSITION_COMMENT(tbe.pendingAcks);
    }
  }

  action(ff_deallocateCacheBlock, "\f",
         desc="Deallocate L1 cache block.") {
    if (cache.isTagPresent(address)) {
      cache.deallocate(address);
    }
    unset_cache_entry();
  }

  action(oo_allocateCacheBlock, "\o", desc="Set cache tag equal to tag of block B.") {
    if (is_invalid(cache_entry)) {
      set_cache_entry(cache.allocate(address, new Entry));
    }
  }

  action(z0_stallAndWaitL0Queue, "\z0", desc="recycle L0 request queue") {
    stall_and_wait(messageBufferFromL0_in, address);
  }

  action(z2_stallAndWaitL2Queue, "\z2", desc="recycle L2 request queue") {
    stall_and_wait(requestNetwork_in, address);
  }

  action(kd_wakeUpDependents, "kd", desc="wake-up dependents") {
    wakeUpAllBuffers(address);
  }

  action(uu_profileMiss, "\um", desc="Profile the demand miss") {
      ++cache.demand_misses;
  }

  action(uu_profileHit, "\uh", desc="Profile the demand hit") {
      ++cache.demand_hits;
  }


  //*****************************************************
  // TRANSITIONS
  //*****************************************************

  // Transitions for Load/Store/Replacement/WriteBack from transient states
  transition({IS, IM, M_I, SM, SINK_WB_ACK, S_IL0, M_IL0, E_IL0, MM_IL0},
             {Load, Store, L1_Replacement}) {
    z0_stallAndWaitL0Queue;
  }

  transition(I, Load, IS) {
    oo_allocateCacheBlock;
    i_allocateTBE;
    a_issueGETS;
    uu_profileMiss;
    k_popL0RequestQueue;
  }

  transition(I, Store, IM) {
    oo_allocateCacheBlock;
    i_allocateTBE;
    b_issueGETX;
    uu_profileMiss;
    k_popL0RequestQueue;
  }

  transition(I, Inv) {
    fi_sendInvAck;
    l_popL2RequestQueue;
  }

  // Transitions from Shared
  transition({S,SS}, Load, S) {
    h_data_to_l0;
    uu_profileHit;
    k_popL0RequestQueue;
  }

  transition(EE, Load, E) {
    hh_xdata_to_l0;
    uu_profileHit;
    k_popL0RequestQueue;
  }

  transition(MM, Load, M) {
    hh_xdata_to_l0;
    uu_profileHit;
    k_popL0RequestQueue;
  }

  transition({S,SS}, Store, SM) {
    i_allocateTBE;
    c_issueUPGRADE;
    uu_profileMiss;
    k_popL0RequestQueue;
  }

  transition(SS, L1_Replacement, I) {
    ff_deallocateCacheBlock;
  }

  transition(S, {L0_Invalidate_Own, L0_Invalidate_Else}, S_IL0) {
    forward_eviction_to_L0;
  }

  transition(SS, Inv, I) {
    fi_sendInvAck;
    ff_deallocateCacheBlock;
    l_popL2RequestQueue;
  }

  // Transitions from Exclusive

  transition({EE,MM}, Store, M) {
    hh_xdata_to_l0;
    uu_profileHit;
    k_popL0RequestQueue;
  }

  transition(EE, L1_Replacement, M_I) {
    // silent E replacement??
    i_allocateTBE;
    g_issuePUTX;   // send data, but hold in case forwarded request
    ff_deallocateCacheBlock;
  }

  transition(EE, Inv, I) {
    // don't send data
    fi_sendInvAck;
    ff_deallocateCacheBlock;
    l_popL2RequestQueue;
  }

  transition(EE, Fwd_GETX, I) {
    d_sendDataToRequestor;
    ff_deallocateCacheBlock;
    l_popL2RequestQueue;
  }

  transition(EE, Fwd_GETS, SS) {
    d_sendDataToRequestor;
    d2_sendDataToL2;
    l_popL2RequestQueue;
  }

  transition(E, {L0_Invalidate_Own, L0_Invalidate_Else}, E_IL0) {
    forward_eviction_to_L0;
  }

  // Transitions from Modified
  transition(MM, L1_Replacement, M_I) {
    i_allocateTBE;
    g_issuePUTX;   // send data, but hold in case forwarded request
    ff_deallocateCacheBlock;
  }

  transition({M,E}, WriteBack, MM) {
    u_writeDataFromL0Request;
    k_popL0RequestQueue;
  }

  transition(M_I, WB_Ack, I) {
    s_deallocateTBE;
    o_popL2ResponseQueue;
    ff_deallocateCacheBlock;
    kd_wakeUpDependents;
  }

  transition(MM, Inv, I) {
    f_sendDataToL2;
    ff_deallocateCacheBlock;
    l_popL2RequestQueue;
  }

  transition(M_I, Inv, SINK_WB_ACK) {
    ft_sendDataToL2_fromTBE;
    l_popL2RequestQueue;
  }

  transition(MM, Fwd_GETX, I) {
    d_sendDataToRequestor;
    ff_deallocateCacheBlock;
    l_popL2RequestQueue;
  }

  transition(MM, Fwd_GETS, SS) {
    d_sendDataToRequestor;
    d2_sendDataToL2;
    l_popL2RequestQueue;
  }

  transition(M, {L0_Invalidate_Own, L0_Invalidate_Else}, M_IL0) {
    forward_eviction_to_L0;
  }

  transition(M_I, Fwd_GETX, SINK_WB_ACK) {
    dt_sendDataToRequestor_fromTBE;
    l_popL2RequestQueue;
  }

  transition(M_I, Fwd_GETS, SINK_WB_ACK) {
    dt_sendDataToRequestor_fromTBE;
    d2t_sendDataToL2_fromTBE;
    l_popL2RequestQueue;
  }

  // Transitions from IS
  transition(IS, Data_all_Acks, S) {
    u_writeDataFromL2Response;
    h_data_to_l0;
    s_deallocateTBE;
    o_popL2ResponseQueue;
    kd_wakeUpDependents;
  }

  transition(IS, DataS_fromL1, S) {
    u_writeDataFromL2Response;
    j_sendUnblock;
    h_data_to_l0;
    s_deallocateTBE;
    o_popL2ResponseQueue;
    kd_wakeUpDependents;
  }

  // directory is blocked when sending exclusive data
  transition(IS, Data_Exclusive, E) {
    u_writeDataFromL2Response;
    hh_xdata_to_l0;
    jj_sendExclusiveUnblock;
    s_deallocateTBE;
    o_popL2ResponseQueue;
    kd_wakeUpDependents;
  }

  // Transitions from IM
  transition({IM,SM}, Inv, IM) {
    fi_sendInvAck;
    l_popL2RequestQueue;
  }

  transition(IM, Data, SM) {
    u_writeDataFromL2Response;
    q_updateAckCount;
    o_popL2ResponseQueue;
  }

  transition(IM, Data_all_Acks, M) {
    u_writeDataFromL2Response;
    hh_xdata_to_l0;
    jj_sendExclusiveUnblock;
    s_deallocateTBE;
    o_popL2ResponseQueue;
    kd_wakeUpDependents;
  }

  transition({SM, IM}, Ack) {
    q_updateAckCount;
    o_popL2ResponseQueue;
  }

  transition(SM, Ack_all, M) {
    jj_sendExclusiveUnblock;
    hh_xdata_to_l0;
    s_deallocateTBE;
    o_popL2ResponseQueue;
    kd_wakeUpDependents;
  }

  transition(SM, L0_Invalidate_Else, SM_IL0) {
    forward_eviction_to_L0;
  }

  transition(SINK_WB_ACK, Inv){
    fi_sendInvAck;
    l_popL2RequestQueue;
  }

  transition(SINK_WB_ACK, WB_Ack, I){
    s_deallocateTBE;
    o_popL2ResponseQueue;
    ff_deallocateCacheBlock;
    kd_wakeUpDependents;
  }

  transition({M_IL0, E_IL0}, WriteBack, MM_IL0) {
    u_writeDataFromL0Request;
    k_popL0RequestQueue;
    kd_wakeUpDependents;
  }

  transition({M_IL0, E_IL0}, L0_DataAck, MM) {
    u_writeDataFromL0Response;
    k_popL0RequestQueue;
    kd_wakeUpDependents;
  }

  transition({M_IL0, MM_IL0}, L0_Ack, MM) {
    k_popL0RequestQueue;
    kd_wakeUpDependents;
  }

  transition(E_IL0, L0_Ack, EE) {
    k_popL0RequestQueue;
    kd_wakeUpDependents;
  }

  transition(S_IL0, L0_Ack, SS) {
    k_popL0RequestQueue;
    kd_wakeUpDependents;
  }

  transition(SM_IL0, L0_Ack, IM) {
    k_popL0RequestQueue;
    kd_wakeUpDependents;
  }

  transition({S_IL0, M_IL0, E_IL0, SM_IL0, SM}, L0_Invalidate_Own) {
    z0_stallAndWaitL0Queue;
  }

  transition({S_IL0, M_IL0, E_IL0, SM_IL0}, L0_Invalidate_Else) {
    z2_stallAndWaitL2Queue;
  }

  transition({IS, S_IL0, M_IL0, E_IL0, MM_IL0}, {Inv, Fwd_GETX, Fwd_GETS}) {
    z2_stallAndWaitL2Queue;
  }
}