/* * Copyright (c) 1999-2013 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ machine(MachineType:L2Cache, "MESI Directory L2 Cache CMP") : CacheMemory * L2cache; Cycles l2_request_latency := 2; Cycles l2_response_latency := 2; Cycles to_l1_latency := 1; // Message Queues // From local bank of L2 cache TO the network MessageBuffer * DirRequestFromL2Cache, network="To", virtual_network="0", vnet_type="request"; // this L2 bank -> Memory MessageBuffer * L1RequestFromL2Cache, network="To", virtual_network="2", vnet_type="request"; // this L2 bank -> a local L1 MessageBuffer * responseFromL2Cache, network="To", virtual_network="1", vnet_type="response"; // this L2 bank -> a local L1 || Memory // FROM the network to this local bank of L2 cache MessageBuffer * unblockToL2Cache, network="From", virtual_network="2", vnet_type="unblock"; // a local L1 || Memory -> this L2 bank MessageBuffer * L1RequestToL2Cache, network="From", virtual_network="0", vnet_type="request"; // a local L1 -> this L2 bank MessageBuffer * responseToL2Cache, network="From", virtual_network="1", vnet_type="response"; // a local L1 || Memory -> this L2 bank { // STATES state_declaration(State, desc="L2 Cache states", default="L2Cache_State_NP") { // Base states NP, AccessPermission:Invalid, desc="Not present in either cache"; SS, AccessPermission:Read_Only, desc="L2 cache entry Shared, also present in one or more L1s"; M, AccessPermission:Read_Write, desc="L2 cache entry Modified, not present in any L1s", format="!b"; MT, AccessPermission:Maybe_Stale, desc="L2 cache entry Modified in a local L1, assume L2 copy stale", format="!b"; // L2 replacement M_I, AccessPermission:Busy, desc="L2 cache replacing, have all acks, sent dirty data to memory, waiting for ACK from memory"; MT_I, AccessPermission:Busy, desc="L2 cache replacing, getting data from exclusive"; MCT_I, AccessPermission:Busy, desc="L2 cache replacing, clean in L2, getting data or ack from exclusive"; I_I, AccessPermission:Busy, desc="L2 replacing clean data, need to inv sharers and then drop data"; S_I, AccessPermission:Busy, desc="L2 replacing dirty data, collecting acks from L1s"; // Transient States for fetching data from memory ISS, AccessPermission:Busy, desc="L2 idle, got single L1_GETS, issued memory fetch, have not seen response yet"; IS, AccessPermission:Busy, desc="L2 idle, got L1_GET_INSTR or multiple L1_GETS, issued memory fetch, have not seen response yet"; IM, AccessPermission:Busy, desc="L2 idle, got L1_GETX, issued memory fetch, have not seen response(s) yet"; II, AccessPermission:Busy, desc="L2 idle, got single L1_GETSPEC, issued memory fetch, have not seen response yet"; IEE, AccessPermission:Busy, desc="L2 idle, got single L1_EXPOSE, issued memory fetch, have not seen response yet"; // Blocking states SS_MB, AccessPermission:Busy, desc="Blocked for L1_GETX from SS"; MT_MB, AccessPermission:Busy, desc="Blocked for L1_GETX from MT"; MT_IIB, AccessPermission:Busy, desc="Blocked for L1_GETS from MT, waiting for unblock and data"; MT_IB, AccessPermission:Busy, desc="Blocked for L1_GETS from MT, got unblock, waiting for data"; MT_SB, AccessPermission:Busy, desc="Blocked for L1_GETS from MT, got data, waiting for unblock"; } // EVENTS enumeration(Event, desc="L2 Cache events") { // L2 events // events initiated by the local L1s L1_GET_INSTR, desc="a L1I GET INSTR request for a block maped to us"; L1_GETS, desc="a L1D GETS request for a block maped to us"; L1_GETX, desc="a L1D GETX request for a block maped to us"; L1_UPGRADE, desc="a L1D GETX request for a block maped to us"; L1_PUTX, desc="L1 replacing data"; L1_PUTX_old, desc="L1 replacing data, but no longer sharer"; L1_GETSPEC, desc="L1 GETSPEC request for a block mapped to us"; L1_EXPOSE, desc="L1 EXPOSE request for a block mapped to us"; // events initiated by this L2 L2_Replacement, desc="L2 Replacement", format="!r"; L2_Replacement_clean, desc="L2 Replacement, but data is clean", format="!r"; // events from memory controller Mem_Data, desc="data from memory", format="!r"; Mem_Ack, desc="ack from memory", format="!r"; // M->S data writeback WB_Data, desc="data from L1"; WB_Data_clean, desc="clean data from L1"; Ack, desc="writeback ack"; Ack_all, desc="writeback ack"; Unblock, desc="Unblock from L1 requestor"; Exclusive_Unblock, desc="Unblock from L1 requestor"; MEM_Inv, desc="Invalidation from directory"; } // TYPES // CacheEntry structure(Entry, desc="...", interface="AbstractCacheEntry") { State CacheState, desc="cache state"; NetDest Sharers, desc="tracks the L1 shares on-chip"; MachineID Exclusive, desc="Exclusive holder of block"; DataBlock DataBlk, desc="data for the block"; bool Dirty, default="false", desc="data is dirty"; } // TBE fields structure(TBE, desc="...") { Addr addr, desc="Physical address for this TBE"; State TBEState, desc="Transient state"; DataBlock DataBlk, desc="Buffer for the data block"; bool Dirty, default="false", desc="Data is Dirty"; NetDest L1_GetS_IDs, desc="Set of the internal processors that want the block in shared state"; NetDest L1_GetSPEC_IDs, desc="Set of the internal processors that want the block speculatively"; NetDest L1_Expose_IDs, desc="Set of the internal processors that want the block to be exposed"; MachineID L1_GetX_ID, desc="ID of the L1 cache to forward the block to once we get a response"; int pendingAcks, desc="number of pending acks for invalidates during writeback"; } structure(TBETable, external="yes") { TBE lookup(Addr); void allocate(Addr); void deallocate(Addr); bool isPresent(Addr); } TBETable TBEs, template="", constructor="m_number_of_TBEs"; Tick clockEdge(); Tick cyclesToTicks(Cycles c); Cycles ticksToCycles(Tick t); void set_cache_entry(AbstractCacheEntry a); void unset_cache_entry(); void set_tbe(TBE a); void unset_tbe(); void wakeUpBuffers(Addr a); void profileMsgDelay(int virtualNetworkType, Cycles c); MachineID mapAddressToMachine(Addr addr, MachineType mtype); // inclusive cache, returns L2 entries only Entry getCacheEntry(Addr addr), return_by_pointer="yes" { return static_cast(Entry, "pointer", L2cache[addr]); } bool isSharer(Addr addr, MachineID requestor, Entry cache_entry) { if (is_valid(cache_entry)) { return cache_entry.Sharers.isElement(requestor); } else { return false; } } void addSharer(Addr addr, MachineID requestor, Entry cache_entry) { assert(is_valid(cache_entry)); DPRINTF(RubySlicc, "machineID: %s, requestor: %s, address: %#x\n", machineID, requestor, addr); cache_entry.Sharers.add(requestor); } State getState(TBE tbe, Entry cache_entry, Addr addr) { if(is_valid(tbe)) { return tbe.TBEState; } else if (is_valid(cache_entry)) { return cache_entry.CacheState; } return State:NP; } void setState(TBE tbe, Entry cache_entry, Addr addr, State state) { // MUST CHANGE if (is_valid(tbe)) { tbe.TBEState := state; } if (is_valid(cache_entry)) { cache_entry.CacheState := state; } } AccessPermission getAccessPermission(Addr addr) { TBE tbe := TBEs[addr]; if(is_valid(tbe)) { DPRINTF(RubySlicc, "%s\n", L2Cache_State_to_permission(tbe.TBEState)); return L2Cache_State_to_permission(tbe.TBEState); } Entry cache_entry := getCacheEntry(addr); if(is_valid(cache_entry)) { DPRINTF(RubySlicc, "%s\n", L2Cache_State_to_permission(cache_entry.CacheState)); return L2Cache_State_to_permission(cache_entry.CacheState); } DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent); return AccessPermission:NotPresent; } void functionalRead(Addr addr, Packet *pkt) { TBE tbe := TBEs[addr]; if(is_valid(tbe)) { testAndRead(addr, tbe.DataBlk, pkt); } else { testAndRead(addr, getCacheEntry(addr).DataBlk, pkt); } } int functionalWrite(Addr addr, Packet *pkt) { int num_functional_writes := 0; TBE tbe := TBEs[addr]; if(is_valid(tbe)) { num_functional_writes := num_functional_writes + testAndWrite(addr, tbe.DataBlk, pkt); return num_functional_writes; } num_functional_writes := num_functional_writes + testAndWrite(addr, getCacheEntry(addr).DataBlk, pkt); return num_functional_writes; } void setAccessPermission(Entry cache_entry, Addr addr, State state) { if (is_valid(cache_entry)) { cache_entry.changePermission(L2Cache_State_to_permission(state)); } } Event L1Cache_request_type_to_event(CoherenceRequestType type, Addr addr, MachineID requestor, Entry cache_entry) { if(type == CoherenceRequestType:GETS) { return Event:L1_GETS; } else if(type == CoherenceRequestType:GET_INSTR) { return Event:L1_GET_INSTR; } else if (type == CoherenceRequestType:GETX) { return Event:L1_GETX; } else if (type == CoherenceRequestType:UPGRADE) { if ( is_valid(cache_entry) && cache_entry.Sharers.isElement(requestor) ) { return Event:L1_UPGRADE; } else { return Event:L1_GETX; } } else if (type == CoherenceRequestType:PUTX) { if (isSharer(addr, requestor, cache_entry)) { return Event:L1_PUTX; } else { return Event:L1_PUTX_old; } } else if (type == CoherenceRequestType:GETSPEC) { return Event:L1_GETSPEC; } else if (type == CoherenceRequestType:EXPOSE) { return Event:L1_EXPOSE; } else { DPRINTF(RubySlicc, "address: %#x, Request Type: %s\n", addr, type); error("Invalid L1 forwarded request type"); } } int getPendingAcks(TBE tbe) { return tbe.pendingAcks; } bool isDirty(Entry cache_entry) { assert(is_valid(cache_entry)); return cache_entry.Dirty; } // ** OUT_PORTS ** out_port(L1RequestL2Network_out, RequestMsg, L1RequestFromL2Cache); out_port(DirRequestL2Network_out, RequestMsg, DirRequestFromL2Cache); out_port(responseL2Network_out, ResponseMsg, responseFromL2Cache); in_port(L1unblockNetwork_in, ResponseMsg, unblockToL2Cache, rank = 2) { if(L1unblockNetwork_in.isReady(clockEdge())) { peek(L1unblockNetwork_in, ResponseMsg) { Entry cache_entry := getCacheEntry(in_msg.addr); TBE tbe := TBEs[in_msg.addr]; DPRINTF(RubySlicc, "Addr: %#x State: %s Sender: %s Type: %s Dest: %s\n", in_msg.addr, getState(tbe, cache_entry, in_msg.addr), in_msg.Sender, in_msg.Type, in_msg.Destination); assert(in_msg.Destination.isElement(machineID)); if (in_msg.Type == CoherenceResponseType:EXCLUSIVE_UNBLOCK) { trigger(Event:Exclusive_Unblock, in_msg.addr, cache_entry, tbe); } else if (in_msg.Type == CoherenceResponseType:UNBLOCK) { trigger(Event:Unblock, in_msg.addr, cache_entry, tbe); } else { error("unknown unblock message"); } } } } // Response L2 Network - response msg to this particular L2 bank in_port(responseL2Network_in, ResponseMsg, responseToL2Cache, rank = 1) { if (responseL2Network_in.isReady(clockEdge())) { peek(responseL2Network_in, ResponseMsg) { // test wether it's from a local L1 or an off chip source assert(in_msg.Destination.isElement(machineID)); Entry cache_entry := getCacheEntry(in_msg.addr); TBE tbe := TBEs[in_msg.addr]; if(machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache) { if(in_msg.Type == CoherenceResponseType:DATA) { if (in_msg.Dirty) { trigger(Event:WB_Data, in_msg.addr, cache_entry, tbe); } else { trigger(Event:WB_Data_clean, in_msg.addr, cache_entry, tbe); } } else if (in_msg.Type == CoherenceResponseType:ACK) { if ((getPendingAcks(tbe) - in_msg.AckCount) == 0) { trigger(Event:Ack_all, in_msg.addr, cache_entry, tbe); } else { trigger(Event:Ack, in_msg.addr, cache_entry, tbe); } } else { error("unknown message type"); } } else { // external message if(in_msg.Type == CoherenceResponseType:MEMORY_DATA) { trigger(Event:Mem_Data, in_msg.addr, cache_entry, tbe); } else if(in_msg.Type == CoherenceResponseType:MEMORY_ACK) { trigger(Event:Mem_Ack, in_msg.addr, cache_entry, tbe); } else if(in_msg.Type == CoherenceResponseType:INV) { trigger(Event:MEM_Inv, in_msg.addr, cache_entry, tbe); } else { error("unknown message type"); } } } } // if not ready, do nothing } // L1 Request in_port(L1RequestL2Network_in, RequestMsg, L1RequestToL2Cache, rank = 0) { if(L1RequestL2Network_in.isReady(clockEdge())) { peek(L1RequestL2Network_in, RequestMsg) { Entry cache_entry := getCacheEntry(in_msg.addr); TBE tbe := TBEs[in_msg.addr]; DPRINTF(RubySlicc, "Addr: %#x State: %s Req: %s Type: %s Dest: %s\n", in_msg.addr, getState(tbe, cache_entry, in_msg.addr), in_msg.Requestor, in_msg.Type, in_msg.Destination); assert(machineIDToMachineType(in_msg.Requestor) == MachineType:L1Cache); assert(in_msg.Destination.isElement(machineID)); if (is_valid(cache_entry)) { // The L2 contains the block, so proceeded with handling the request trigger(L1Cache_request_type_to_event(in_msg.Type, in_msg.addr, in_msg.Requestor, cache_entry), in_msg.addr, cache_entry, tbe); } else { if (L2cache.cacheAvail(in_msg.addr)) { // L2 does't have the line, but we have space for it in the L2 trigger(L1Cache_request_type_to_event(in_msg.Type, in_msg.addr, in_msg.Requestor, cache_entry), in_msg.addr, cache_entry, tbe); } else { // No room in the L2, so we need to make room before handling the request Entry L2cache_entry := getCacheEntry(L2cache.cacheProbe(in_msg.addr)); if (isDirty(L2cache_entry)) { trigger(Event:L2_Replacement, L2cache.cacheProbe(in_msg.addr), L2cache_entry, TBEs[L2cache.cacheProbe(in_msg.addr)]); } else { trigger(Event:L2_Replacement_clean, L2cache.cacheProbe(in_msg.addr), L2cache_entry, TBEs[L2cache.cacheProbe(in_msg.addr)]); } } } } } } // ACTIONS action(a_issueFetchToMemory, "a", desc="fetch data from memory") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(DirRequestL2Network_out, RequestMsg, l2_request_latency) { out_msg.addr := address; out_msg.Type := in_msg.Type; out_msg.Requestor := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := in_msg.MessageSize; out_msg.idx := in_msg.idx; out_msg.origin := in_msg.Requestor; } } } action(b_forwardRequestToExclusive, "b", desc="Forward request to the exclusive L1") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(L1RequestL2Network_out, RequestMsg, to_l1_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := in_msg.Type; out_msg.Requestor := in_msg.Requestor; out_msg.Destination.add(cache_entry.Exclusive); out_msg.MessageSize := MessageSizeType:Request_Control; } } } action(bs_forwardSpecRequestToExclusive, "bs", desc="Forward request to the exclusive L1") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(L1RequestL2Network_out, RequestMsg, to_l1_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := in_msg.Type; out_msg.Requestor := in_msg.Requestor; out_msg.Destination.add(cache_entry.Exclusive); out_msg.MessageSize := MessageSizeType:SPECLD_Request_Control; } } } action(bex_forwardExposeRequestToExclusive, "bex", desc="Forward request to the exclusive L1") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(L1RequestL2Network_out, RequestMsg, to_l1_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := in_msg.Type; out_msg.Requestor := in_msg.Requestor; out_msg.Destination.add(cache_entry.Exclusive); out_msg.MessageSize := MessageSizeType:EXPOSE_Request_Control; } } } action(c_exclusiveReplacement, "c", desc="Send data to memory") { enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:MEMORY_DATA; out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.DataBlk := cache_entry.DataBlk; out_msg.Dirty := cache_entry.Dirty; out_msg.MessageSize := MessageSizeType:Response_Data; } } action(c_exclusiveCleanReplacement, "cc", desc="Send ack to memory for clean replacement") { enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:ACK; out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := MessageSizeType:Response_Control; } } action(ct_exclusiveReplacementFromTBE, "ct", desc="Send data to memory") { enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) { assert(is_valid(tbe)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:MEMORY_DATA; out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.DataBlk := tbe.DataBlk; out_msg.Dirty := tbe.Dirty; out_msg.MessageSize := MessageSizeType:Response_Data; } } action(d_sendDataToRequestor, "d", desc="Send data from cache to reqeustor") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; out_msg.AckCount := 0 - cache_entry.Sharers.count(); if (cache_entry.Sharers.isElement(in_msg.Requestor)) { out_msg.AckCount := out_msg.AckCount + 1; } } } } action(dd_sendExclusiveDataToRequestor, "dd", desc="Send data from cache to reqeustor") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; out_msg.AckCount := 0 - cache_entry.Sharers.count(); if (cache_entry.Sharers.isElement(in_msg.Requestor)) { out_msg.AckCount := out_msg.AckCount + 1; } } } } action(ddex_sendExclusiveDataToExposeRequestor, "ddex", desc="Send data from cache to reqeustor") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:EXPOSE_Data; out_msg.AckCount := 0 - cache_entry.Sharers.count(); if (cache_entry.Sharers.isElement(in_msg.Requestor)) { out_msg.AckCount := out_msg.AckCount + 1; } } } } action(ds_sendSharedDataToRequestor, "ds", desc="Send data from cache to reqeustor") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; out_msg.AckCount := 0; } } } action(dss_sendSharedDataToSpecRequestor, "dss", desc="Send data from cache to reqeustor") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:SPECLD_Data; out_msg.AckCount := 0; } } } action(dsex_sendSharedDataToExposeRequestor, "dsex", desc="Send data from cache to reqeustor") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(responseL2Network_out, ResponseMsg, l2_response_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:EXPOSE_Data; out_msg.AckCount := 0; } } } action(e_sendDataToGetSRequestors, "e", desc="Send data from cache to all GetS IDs") { assert(is_valid(tbe)); assert(tbe.L1_GetS_IDs.count() + tbe.L1_GetSPEC_IDs.count() + tbe.L1_Expose_IDs.count() > 0); enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination := tbe.L1_GetS_IDs; // internal nodes out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; } } action(es_sendDataToGetSpecRequestors, "es", desc="Send data from cache to all GetSpec IDs") { assert(is_valid(tbe)); assert(tbe.L1_GetS_IDs.count() + tbe.L1_GetSPEC_IDs.count() + tbe.L1_Expose_IDs.count() > 0); peek(responseL2Network_in, ResponseMsg) { enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination := tbe.L1_GetSPEC_IDs; // internal nodes out_msg.DataBlk := in_msg.DataBlk; out_msg.MessageSize := MessageSizeType:SPECLD_Data; } } } action(eex_sendDataToExposeRequestors, "eex", desc="Send data from cache to all GetSpec IDs") { assert(is_valid(tbe)); assert(tbe.L1_GetS_IDs.count() + tbe.L1_GetSPEC_IDs.count() + tbe.L1_Expose_IDs.count() > 0); peek(responseL2Network_in, ResponseMsg) { enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination := tbe.L1_Expose_IDs; // internal nodes out_msg.DataBlk := in_msg.DataBlk; out_msg.MessageSize := MessageSizeType:EXPOSE_Data; } } } action(ex_sendExclusiveDataToGetSRequestors, "ex", desc="Send data from cache to all GetS IDs") { assert(is_valid(tbe)); assert(tbe.L1_GetS_IDs.count() == 1); assert(tbe.L1_GetSPEC_IDs.count() + tbe.L1_Expose_IDs.count() == 0); enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; out_msg.Sender := machineID; out_msg.Destination := tbe.L1_GetS_IDs; // internal nodes out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; } } action(exex_sendExclusiveDataToExposeRequestors, "exex", desc="Send data from cache to all GetS IDs") { assert(is_valid(tbe)); assert(tbe.L1_Expose_IDs.count() == 1); assert(tbe.L1_GetS_IDs.count() + tbe.L1_GetSPEC_IDs.count() == 0); enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; out_msg.Sender := machineID; out_msg.Destination := tbe.L1_Expose_IDs; // internal nodes out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:EXPOSE_Data; } } action(ee_sendDataToGetXRequestor, "ee", desc="Send data from cache to GetX ID") { enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) { assert(is_valid(tbe)); assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination.add(tbe.L1_GetX_ID); DPRINTF(RubySlicc, "%s\n", out_msg.Destination); out_msg.DataBlk := cache_entry.DataBlk; DPRINTF(RubySlicc, "Address: %#x, Destination: %s, DataBlock: %s\n", out_msg.addr, out_msg.Destination, out_msg.DataBlk); out_msg.MessageSize := MessageSizeType:Response_Data; } } action(f_sendInvToSharers, "f", desc="invalidate sharers for L2 replacement") { enqueue(L1RequestL2Network_out, RequestMsg, to_l1_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceRequestType:INV; out_msg.Requestor := machineID; out_msg.Destination := cache_entry.Sharers; out_msg.MessageSize := MessageSizeType:Request_Control; } } action(fw_sendFwdInvToSharers, "fw", desc="invalidate sharers for request") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(L1RequestL2Network_out, RequestMsg, to_l1_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceRequestType:INV; out_msg.Requestor := in_msg.Requestor; out_msg.Destination := cache_entry.Sharers; out_msg.MessageSize := MessageSizeType:Request_Control; } } } action(fwm_sendFwdInvToSharersMinusRequestor, "fwm", desc="invalidate sharers for request, requestor is sharer") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(L1RequestL2Network_out, RequestMsg, to_l1_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceRequestType:INV; out_msg.Requestor := in_msg.Requestor; out_msg.Destination := cache_entry.Sharers; out_msg.Destination.remove(in_msg.Requestor); out_msg.MessageSize := MessageSizeType:Request_Control; } } } // OTHER ACTIONS action(i_allocateTBE, "i", desc="Allocate TBE for request") { check_allocate(TBEs); assert(is_valid(cache_entry)); TBEs.allocate(address); set_tbe(TBEs[address]); tbe.L1_GetS_IDs.clear(); tbe.L1_GetSPEC_IDs.clear(); tbe.L1_Expose_IDs.clear(); tbe.DataBlk := cache_entry.DataBlk; tbe.Dirty := cache_entry.Dirty; tbe.pendingAcks := cache_entry.Sharers.count(); } action(iw_allocateTBEWithoutCacheEntry, "iw", desc="Allocate TBE for request without a cache entry") { check_allocate(TBEs); assert(!is_valid(cache_entry)); TBEs.allocate(address); set_tbe(TBEs[address]); tbe.L1_GetS_IDs.clear(); tbe.L1_GetSPEC_IDs.clear(); tbe.L1_Expose_IDs.clear(); } action(s_deallocateTBE, "s", desc="Deallocate external TBE") { TBEs.deallocate(address); unset_tbe(); } action(jj_popL1RequestQueue, "\j", desc="Pop incoming L1 request queue") { Tick delay := L1RequestL2Network_in.dequeue(clockEdge()); profileMsgDelay(0, ticksToCycles(delay)); } action(k_popUnblockQueue, "k", desc="Pop incoming unblock queue") { Tick delay := L1unblockNetwork_in.dequeue(clockEdge()); profileMsgDelay(0, ticksToCycles(delay)); } action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue") { Tick delay := responseL2Network_in.dequeue(clockEdge()); profileMsgDelay(1, ticksToCycles(delay)); } action(m_writeDataToCache, "m", desc="Write data from response queue to cache") { peek(responseL2Network_in, ResponseMsg) { assert(is_valid(cache_entry)); cache_entry.DataBlk := in_msg.DataBlk; if (in_msg.Dirty) { cache_entry.Dirty := in_msg.Dirty; } } } action(mr_writeDataToCacheFromRequest, "mr", desc="Write data from response queue to cache") { peek(L1RequestL2Network_in, RequestMsg) { assert(is_valid(cache_entry)); if (in_msg.Dirty) { cache_entry.DataBlk := in_msg.DataBlk; cache_entry.Dirty := in_msg.Dirty; } } } action(q_updateAck, "q", desc="update pending ack count") { peek(responseL2Network_in, ResponseMsg) { assert(is_valid(tbe)); tbe.pendingAcks := tbe.pendingAcks - in_msg.AckCount; APPEND_TRANSITION_COMMENT(in_msg.AckCount); APPEND_TRANSITION_COMMENT(" p: "); APPEND_TRANSITION_COMMENT(tbe.pendingAcks); } } action(qq_writeDataToTBE, "\qq", desc="Write data from response queue to TBE") { peek(responseL2Network_in, ResponseMsg) { assert(is_valid(tbe)); tbe.DataBlk := in_msg.DataBlk; tbe.Dirty := in_msg.Dirty; } } action(ss_recordGetSL1ID, "\s", desc="Record L1 GetS for load response") { peek(L1RequestL2Network_in, RequestMsg) { assert(is_valid(tbe)); tbe.L1_GetS_IDs.add(in_msg.Requestor); } } action(sss_recordGetSPECL1ID, "\sss", desc="Record L1 GetSpec for load response") { peek(L1RequestL2Network_in, RequestMsg) { assert(is_valid(tbe)); tbe.L1_GetSPEC_IDs.add(in_msg.Requestor); } } action(ssss_recordExposeL1ID, "\ssss", desc="Record L1 Expose for load response") { peek(L1RequestL2Network_in, RequestMsg) { assert(is_valid(tbe)); tbe.L1_Expose_IDs.add(in_msg.Requestor); } } action(xx_recordGetXL1ID, "\x", desc="Record L1 GetX for store response") { peek(L1RequestL2Network_in, RequestMsg) { assert(is_valid(tbe)); tbe.L1_GetX_ID := in_msg.Requestor; } } action(set_setMRU, "\set", desc="set the MRU entry") { L2cache.setMRU(address); } action(qq_allocateL2CacheBlock, "\q", desc="Set L2 cache tag equal to tag of block B.") { if (is_invalid(cache_entry)) { set_cache_entry(L2cache.allocate(address, new Entry)); } } action(rr_deallocateL2CacheBlock, "\r", desc="Deallocate L2 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") { L2cache.deallocate(address); unset_cache_entry(); } action(t_sendWBAck, "t", desc="Send writeback ACK") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:WB_ACK; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.MessageSize := MessageSizeType:Response_Control; } } } action(ts_sendInvAckToUpgrader, "ts", desc="Send ACK to upgrader") { peek(L1RequestL2Network_in, RequestMsg) { enqueue(responseL2Network_out, ResponseMsg, to_l1_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:ACK; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.MessageSize := MessageSizeType:Response_Control; // upgrader doesn't get ack from itself, hence the + 1 out_msg.AckCount := 0 - cache_entry.Sharers.count() + 1; } } } action(uu_profileMiss, "\um", desc="Profile the demand miss") { ++L2cache.demand_misses; } action(uu_profileHit, "\uh", desc="Profile the demand hit") { ++L2cache.demand_hits; } action(nn_addSharer, "\n", desc="Add L1 sharer to list") { peek(L1RequestL2Network_in, RequestMsg) { assert(is_valid(cache_entry)); addSharer(address, in_msg.Requestor, cache_entry); APPEND_TRANSITION_COMMENT( cache_entry.Sharers ); } } action(nnu_addSharerFromUnblock, "\nu", desc="Add L1 sharer to list") { peek(L1unblockNetwork_in, ResponseMsg) { assert(is_valid(cache_entry)); addSharer(address, in_msg.Sender, cache_entry); } } action(kk_removeRequestSharer, "\k", desc="Remove L1 Request sharer from list") { peek(L1RequestL2Network_in, RequestMsg) { assert(is_valid(cache_entry)); cache_entry.Sharers.remove(in_msg.Requestor); } } action(ll_clearSharers, "\l", desc="Remove all L1 sharers from list") { peek(L1RequestL2Network_in, RequestMsg) { assert(is_valid(cache_entry)); cache_entry.Sharers.clear(); } } action(mm_markExclusive, "\m", desc="set the exclusive owner") { peek(L1RequestL2Network_in, RequestMsg) { assert(is_valid(cache_entry)); cache_entry.Sharers.clear(); cache_entry.Exclusive := in_msg.Requestor; addSharer(address, in_msg.Requestor, cache_entry); } } action(mmu_markExclusiveFromUnblock, "\mu", desc="set the exclusive owner") { peek(L1unblockNetwork_in, ResponseMsg) { assert(is_valid(cache_entry)); cache_entry.Sharers.clear(); cache_entry.Exclusive := in_msg.Sender; addSharer(address, in_msg.Sender, cache_entry); } } action(zz_stallAndWaitL1RequestQueue, "zz", desc="recycle L1 request queue") { stall_and_wait(L1RequestL2Network_in, address); } action(zn_recycleResponseNetwork, "zn", desc="recycle memory request") { responseL2Network_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(kd_wakeUpDependents, "kd", desc="wake-up dependents") { wakeUpBuffers(address); } //***************************************************** // TRANSITIONS //***************************************************** //=============================================== // BASE STATE - I // Transitions from I (Idle) transition({NP, IS, ISS, IEE, IM, II, SS, M, M_I, I_I, S_I, MT_IB, MT_SB}, L1_PUTX) { t_sendWBAck; jj_popL1RequestQueue; } transition({NP, SS, M, MT, M_I, I_I, S_I, IS, ISS, IEE, IM, II, MT_IB, MT_SB}, L1_PUTX_old) { t_sendWBAck; jj_popL1RequestQueue; } transition({IM, IS, ISS, IEE, II, SS_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, {L2_Replacement, L2_Replacement_clean}) { zz_stallAndWaitL1RequestQueue; } // [InvisiSpec] TODO: How to handle Mem_Inv at II? Stall or ignore? transition({IM, IS, ISS, IEE, II, SS_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, MEM_Inv) { zn_recycleResponseNetwork; } transition({I_I, S_I, M_I, MT_I, MCT_I, NP}, MEM_Inv) { o_popIncomingResponseQueue; } transition({SS_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, {L1_GETS, L1_EXPOSE, L1_GET_INSTR, L1_GETX, L1_UPGRADE, L1_GETSPEC}) { zz_stallAndWaitL1RequestQueue; } transition(NP, L1_GETS, ISS) { qq_allocateL2CacheBlock; ll_clearSharers; nn_addSharer; i_allocateTBE; ss_recordGetSL1ID; a_issueFetchToMemory; uu_profileMiss; jj_popL1RequestQueue; } transition(NP, L1_EXPOSE, IEE) { qq_allocateL2CacheBlock; ll_clearSharers; nn_addSharer; i_allocateTBE; ssss_recordExposeL1ID; a_issueFetchToMemory; uu_profileMiss; jj_popL1RequestQueue; } transition(NP, L1_GET_INSTR, IS) { qq_allocateL2CacheBlock; ll_clearSharers; nn_addSharer; i_allocateTBE; ss_recordGetSL1ID; a_issueFetchToMemory; uu_profileMiss; jj_popL1RequestQueue; } transition(NP, L1_GETX, IM) { qq_allocateL2CacheBlock; ll_clearSharers; // nn_addSharer; i_allocateTBE; xx_recordGetXL1ID; a_issueFetchToMemory; uu_profileMiss; jj_popL1RequestQueue; } transition(NP, L1_GETSPEC, II) { iw_allocateTBEWithoutCacheEntry; sss_recordGetSPECL1ID; a_issueFetchToMemory; jj_popL1RequestQueue; } // transitions from IS/IM transition(ISS, Mem_Data, MT_MB) { m_writeDataToCache; ex_sendExclusiveDataToGetSRequestors; es_sendDataToGetSpecRequestors; s_deallocateTBE; o_popIncomingResponseQueue; } transition(IEE, Mem_Data, MT_MB) { m_writeDataToCache; exex_sendExclusiveDataToExposeRequestors; es_sendDataToGetSpecRequestors; s_deallocateTBE; o_popIncomingResponseQueue; } transition(IS, Mem_Data, SS) { m_writeDataToCache; e_sendDataToGetSRequestors; es_sendDataToGetSpecRequestors; eex_sendDataToExposeRequestors; s_deallocateTBE; o_popIncomingResponseQueue; kd_wakeUpDependents; } transition(IM, Mem_Data, MT_MB) { m_writeDataToCache; ee_sendDataToGetXRequestor; s_deallocateTBE; o_popIncomingResponseQueue; } transition(II, Mem_Data, NP) { es_sendDataToGetSpecRequestors; s_deallocateTBE; o_popIncomingResponseQueue; kd_wakeUpDependents; } transition({IS, ISS, IEE}, {L1_GETS, L1_GET_INSTR}, IS) { nn_addSharer; ss_recordGetSL1ID; uu_profileMiss; jj_popL1RequestQueue; } transition({IS, ISS, IEE}, L1_EXPOSE, IS) { nn_addSharer; ssss_recordExposeL1ID; uu_profileMiss; jj_popL1RequestQueue; } transition({IS, ISS, IEE}, L1_GETSPEC, IS) { sss_recordGetSPECL1ID; jj_popL1RequestQueue; } transition(II, L1_GETSPEC) { sss_recordGetSPECL1ID; jj_popL1RequestQueue; } // [InvisiSpec] L1_GET_INSTR should not be received at II transition(II, {L1_GETS, L1_EXPOSE}) { zz_stallAndWaitL1RequestQueue; } // [InvisiSpec] TODO: Maybe we can optimize this? transition({IS, ISS, IEE, II}, L1_GETX) { zz_stallAndWaitL1RequestQueue; } transition(IM, {L1_GETX, L1_GETS, L1_EXPOSE, L1_GET_INSTR, L1_GETSPEC}) { zz_stallAndWaitL1RequestQueue; } // transitions from SS transition(SS, {L1_GETS, L1_GET_INSTR}) { ds_sendSharedDataToRequestor; nn_addSharer; set_setMRU; uu_profileHit; jj_popL1RequestQueue; } transition(SS, L1_EXPOSE) { dsex_sendSharedDataToExposeRequestor; nn_addSharer; set_setMRU; uu_profileHit; jj_popL1RequestQueue; } transition({SS, M}, L1_GETSPEC) { dss_sendSharedDataToSpecRequestor; jj_popL1RequestQueue; } transition(SS, L1_GETX, SS_MB) { d_sendDataToRequestor; // fw_sendFwdInvToSharers; fwm_sendFwdInvToSharersMinusRequestor; set_setMRU; uu_profileHit; jj_popL1RequestQueue; } transition(SS, L1_UPGRADE, SS_MB) { fwm_sendFwdInvToSharersMinusRequestor; ts_sendInvAckToUpgrader; set_setMRU; uu_profileHit; jj_popL1RequestQueue; } transition(SS, L2_Replacement_clean, I_I) { i_allocateTBE; f_sendInvToSharers; rr_deallocateL2CacheBlock; } transition(SS, {L2_Replacement, MEM_Inv}, S_I) { i_allocateTBE; f_sendInvToSharers; rr_deallocateL2CacheBlock; } transition(M, L1_GETX, MT_MB) { d_sendDataToRequestor; set_setMRU; uu_profileHit; jj_popL1RequestQueue; } transition(M, L1_GET_INSTR, SS) { d_sendDataToRequestor; nn_addSharer; set_setMRU; uu_profileHit; jj_popL1RequestQueue; } transition(M, L1_GETS, MT_MB) { dd_sendExclusiveDataToRequestor; set_setMRU; uu_profileHit; jj_popL1RequestQueue; } // [InvisiSpec] TODO transition(M, L1_EXPOSE, MT_MB) { ddex_sendExclusiveDataToExposeRequestor; set_setMRU; uu_profileHit; jj_popL1RequestQueue; } transition(M, {L2_Replacement, MEM_Inv}, M_I) { i_allocateTBE; c_exclusiveReplacement; rr_deallocateL2CacheBlock; } transition(M, L2_Replacement_clean, M_I) { i_allocateTBE; c_exclusiveCleanReplacement; rr_deallocateL2CacheBlock; } // transitions from MT transition(MT, L1_GETX, MT_MB) { b_forwardRequestToExclusive; uu_profileMiss; set_setMRU; jj_popL1RequestQueue; } transition(MT, {L1_GETS, L1_GET_INSTR}, MT_IIB) { b_forwardRequestToExclusive; uu_profileMiss; set_setMRU; jj_popL1RequestQueue; } // [InvisiSpec] TODO: Ack packets are currently not recorded as EXPOSE traffic. transition(MT, L1_EXPOSE, MT_IIB) { bex_forwardExposeRequestToExclusive; uu_profileMiss; set_setMRU; jj_popL1RequestQueue; } // [InvisiSpec] Do we need to block? transition(MT, L1_GETSPEC) { bs_forwardSpecRequestToExclusive; jj_popL1RequestQueue; } transition(MT, {L2_Replacement, MEM_Inv}, MT_I) { i_allocateTBE; f_sendInvToSharers; rr_deallocateL2CacheBlock; } transition(MT, L2_Replacement_clean, MCT_I) { i_allocateTBE; f_sendInvToSharers; rr_deallocateL2CacheBlock; } transition(MT, L1_PUTX, M) { ll_clearSharers; mr_writeDataToCacheFromRequest; t_sendWBAck; jj_popL1RequestQueue; } transition({SS_MB,MT_MB}, Exclusive_Unblock, MT) { // update actual directory mmu_markExclusiveFromUnblock; k_popUnblockQueue; kd_wakeUpDependents; } transition(MT_IIB, {L1_PUTX, L1_PUTX_old}){ zz_stallAndWaitL1RequestQueue; } transition(MT_IIB, Unblock, MT_IB) { nnu_addSharerFromUnblock; k_popUnblockQueue; } transition(MT_IIB, {WB_Data, WB_Data_clean}, MT_SB) { m_writeDataToCache; o_popIncomingResponseQueue; } transition(MT_IB, {WB_Data, WB_Data_clean}, SS) { m_writeDataToCache; o_popIncomingResponseQueue; kd_wakeUpDependents; } transition(MT_SB, Unblock, SS) { nnu_addSharerFromUnblock; k_popUnblockQueue; kd_wakeUpDependents; } // writeback states transition({I_I, S_I, MT_I, MCT_I, M_I}, {L1_GETX, L1_UPGRADE, L1_GETS, L1_EXPOSE, L1_GET_INSTR, L1_GETSPEC}) { zz_stallAndWaitL1RequestQueue; } transition(I_I, Ack) { q_updateAck; o_popIncomingResponseQueue; } transition(I_I, Ack_all, M_I) { c_exclusiveCleanReplacement; o_popIncomingResponseQueue; } transition({MT_I, MCT_I}, WB_Data, M_I) { qq_writeDataToTBE; ct_exclusiveReplacementFromTBE; o_popIncomingResponseQueue; } transition(MCT_I, {WB_Data_clean, Ack_all}, M_I) { c_exclusiveCleanReplacement; o_popIncomingResponseQueue; } transition(MCT_I, {L1_PUTX, L1_PUTX_old}){ zz_stallAndWaitL1RequestQueue; } // L1 never changed Dirty data transition(MT_I, {WB_Data_clean, Ack_all}, M_I) { ct_exclusiveReplacementFromTBE; o_popIncomingResponseQueue; } transition(MT_I, {L1_PUTX, L1_PUTX_old}){ zz_stallAndWaitL1RequestQueue; } // possible race between unblock and immediate replacement transition({MT_MB,SS_MB}, {L1_PUTX, L1_PUTX_old}) { zz_stallAndWaitL1RequestQueue; } transition(S_I, Ack) { q_updateAck; o_popIncomingResponseQueue; } transition(S_I, Ack_all, M_I) { ct_exclusiveReplacementFromTBE; o_popIncomingResponseQueue; } transition(M_I, Mem_Ack, NP) { s_deallocateTBE; o_popIncomingResponseQueue; kd_wakeUpDependents; } }