/*
 * Copyright (c) 1999-2013 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

machine(Directory, "MESI Two Level directory protocol")
 : DirectoryMemory * directory;
   MemoryControl * memBuffer;
   Cycles to_mem_ctrl_latency := 1;
   Cycles directory_latency := 6;

   MessageBuffer * requestToDir, network="From", virtual_network="0",
        ordered="false", vnet_type="request";
   MessageBuffer * responseToDir, network="From", virtual_network="1",
        ordered="false", vnet_type="response";
   MessageBuffer * responseFromDir, network="To", virtual_network="1",
        ordered="false", vnet_type="response";
{
  // STATES
  state_declaration(State, desc="Directory states", default="Directory_State_I") {
    // Base states
    I, AccessPermission:Read_Write, desc="dir is the owner and memory is up-to-date, all other copies are Invalid";
    ID, AccessPermission:Busy, desc="Intermediate state for DMA_READ when in I";
    ID_W, AccessPermission:Busy, desc="Intermediate state for DMA_WRITE when in I";

    M, AccessPermission:Maybe_Stale, desc="memory copy may be stale, i.e. other modified copies may exist";
    IM, AccessPermission:Busy, desc="Intermediate State I>M";
    MI, AccessPermission:Busy, desc="Intermediate State M>I";
    M_DRD, AccessPermission:Busy, desc="Intermediate State when there is a dma read";
    M_DRDI, AccessPermission:Busy, desc="Intermediate State when there is a dma read";
    M_DWR, AccessPermission:Busy, desc="Intermediate State when there is a dma write";
    M_DWRI, AccessPermission:Busy, desc="Intermediate State when there is a dma write";
  }

  // Events
  enumeration(Event, desc="Directory events") {
    Fetch, desc="A memory fetch arrives";
    Data, desc="writeback data arrives";
    Memory_Data, desc="Fetched data from memory arrives";
    Memory_Ack, desc="Writeback Ack from memory arrives";
//added by SS for dma
    DMA_READ, desc="A DMA Read memory request";
    DMA_WRITE, desc="A DMA Write memory request";
    CleanReplacement, desc="Clean Replacement in L2 cache";

  }

  // TYPES

  // DirectoryEntry
  structure(Entry, desc="...", interface="AbstractEntry") {
    State DirectoryState,          desc="Directory state";
    DataBlock DataBlk,             desc="data for the block";
    MachineID Owner;
  }

  // TBE entries for DMA requests
  structure(TBE, desc="TBE entries for outstanding DMA requests") {
    Address PhysicalAddress, desc="physical address";
    State TBEState,        desc="Transient State";
    DataBlock DataBlk,     desc="Data to be written (DMA write only)";
    int Len,               desc="...";
  }

  structure(TBETable, external="yes") {
    TBE lookup(Address);
    void allocate(Address);
    void deallocate(Address);
    bool isPresent(Address);
  }


  // ** OBJECTS **
  TBETable TBEs, template="<Directory_TBE>", constructor="m_number_of_TBEs";

  void set_tbe(TBE tbe);
  void unset_tbe();
  void wakeUpBuffers(Address a);

  Entry getDirectoryEntry(Address addr), return_by_pointer="yes" {
    Entry dir_entry := static_cast(Entry, "pointer", directory[addr]);

    if (is_valid(dir_entry)) {
      return dir_entry;
    }

    dir_entry :=  static_cast(Entry, "pointer",
                              directory.allocate(addr, new Entry));
    return dir_entry;
  }

  State getState(TBE tbe, Address addr) {
    if (is_valid(tbe)) {
      return tbe.TBEState;
    } else if (directory.isPresent(addr)) {
      return getDirectoryEntry(addr).DirectoryState;
    } else {
      return State:I;
    }
  }

  void setState(TBE tbe, Address addr, State state) {
    if (is_valid(tbe)) {
      tbe.TBEState := state;
    }

    if (directory.isPresent(addr)) {
      getDirectoryEntry(addr).DirectoryState := state;
    }
  }

  AccessPermission getAccessPermission(Address addr) {
    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      DPRINTF(RubySlicc, "%s\n", Directory_State_to_permission(tbe.TBEState));
      return Directory_State_to_permission(tbe.TBEState);
    }

    if(directory.isPresent(addr)) {
      DPRINTF(RubySlicc, "%s\n", Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState));
      return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState);
    }

    DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent);
    return AccessPermission:NotPresent;
  }

  DataBlock getDataBlock(Address addr), return_by_ref="yes" {
    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
        return tbe.DataBlk;
    }

    return getDirectoryEntry(addr).DataBlk;
  }

  void setAccessPermission(Address addr, State state) {
    if (directory.isPresent(addr)) {
      getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state));
    }
  }

  bool isGETRequest(CoherenceRequestType type) {
    return (type == CoherenceRequestType:GETS) ||
      (type == CoherenceRequestType:GET_INSTR) ||
      (type == CoherenceRequestType:GETX);
  }


  // ** OUT_PORTS **
  out_port(responseNetwork_out, ResponseMsg, responseFromDir);
  out_port(memQueue_out, MemoryMsg, memBuffer);

  // ** IN_PORTS **

  in_port(requestNetwork_in, RequestMsg, requestToDir, rank = 0) {
    if (requestNetwork_in.isReady()) {
      peek(requestNetwork_in, RequestMsg) {
        assert(in_msg.Destination.isElement(machineID));
        if (isGETRequest(in_msg.Type)) {
          trigger(Event:Fetch, in_msg.Addr, TBEs[in_msg.Addr]);
        } else if (in_msg.Type == CoherenceRequestType:DMA_READ) {
          trigger(Event:DMA_READ, makeLineAddress(in_msg.Addr),
                  TBEs[makeLineAddress(in_msg.Addr)]);
        } else if (in_msg.Type == CoherenceRequestType:DMA_WRITE) {
          trigger(Event:DMA_WRITE, makeLineAddress(in_msg.Addr),
                  TBEs[makeLineAddress(in_msg.Addr)]);
        } else {
          DPRINTF(RubySlicc, "%s\n", in_msg);
          error("Invalid message");
        }
      }
    }
  }

  in_port(responseNetwork_in, ResponseMsg, responseToDir, rank = 1) {
    if (responseNetwork_in.isReady()) {
      peek(responseNetwork_in, ResponseMsg) {
        assert(in_msg.Destination.isElement(machineID));
        if (in_msg.Type == CoherenceResponseType:MEMORY_DATA) {
          trigger(Event:Data, in_msg.Addr, TBEs[in_msg.Addr]);
        } else if (in_msg.Type == CoherenceResponseType:ACK) {
          trigger(Event:CleanReplacement, in_msg.Addr, TBEs[in_msg.Addr]);
        } else {
          DPRINTF(RubySlicc, "%s\n", in_msg.Type);
          error("Invalid message");
        }
      }
    }
  }

  // off-chip memory request/response is done
  in_port(memQueue_in, MemoryMsg, memBuffer, rank = 2) {
    if (memQueue_in.isReady()) {
      peek(memQueue_in, MemoryMsg) {
        if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
          trigger(Event:Memory_Data, in_msg.Addr, TBEs[in_msg.Addr]);
        } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
          trigger(Event:Memory_Ack, in_msg.Addr, TBEs[in_msg.Addr]);
        } else {
          DPRINTF(RubySlicc, "%s\n", in_msg.Type);
          error("Invalid message");
        }
      }
    }
  }


  // Actions
  action(a_sendAck, "a", desc="Send ack to L2") {
    peek(responseNetwork_in, ResponseMsg) {
      enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
        out_msg.Addr := address;
        out_msg.Type := CoherenceResponseType:MEMORY_ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Sender);
        out_msg.MessageSize := MessageSizeType:Response_Control;
      }
    }
  }

  action(d_sendData, "d", desc="Send data to requestor") {
    peek(memQueue_in, MemoryMsg) {
      enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
        out_msg.Addr := address;
        out_msg.Type := CoherenceResponseType:MEMORY_DATA;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.OriginalRequestorMachId);
        out_msg.DataBlk := in_msg.DataBlk;
        out_msg.Dirty := false;
        out_msg.MessageSize := MessageSizeType:Response_Data;

        Entry e := getDirectoryEntry(in_msg.Addr);
        e.Owner := in_msg.OriginalRequestorMachId;
      }
    }
  }

  // Actions
  action(aa_sendAck, "aa", desc="Send ack to L2") {
    peek(memQueue_in, MemoryMsg) {
      enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
        out_msg.Addr := address;
        out_msg.Type := CoherenceResponseType:MEMORY_ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.OriginalRequestorMachId);
        out_msg.MessageSize := MessageSizeType:Response_Control;
      }
    }
  }

  action(j_popIncomingRequestQueue, "j", desc="Pop incoming request queue") {
    requestNetwork_in.dequeue();
  }

  action(k_popIncomingResponseQueue, "k", desc="Pop incoming request queue") {
    responseNetwork_in.dequeue();
  }

  action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
    memQueue_in.dequeue();
  }

  action(kd_wakeUpDependents, "kd", desc="wake-up dependents") {
    wakeUpBuffers(address);
  }

  action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
    peek(requestNetwork_in, RequestMsg) {
      enqueue(memQueue_out, MemoryMsg, to_mem_ctrl_latency) {
        out_msg.Addr := address;
        out_msg.Type := MemoryRequestType:MEMORY_READ;
        out_msg.Sender := machineID;
        out_msg.OriginalRequestorMachId := in_msg.Requestor;
        out_msg.MessageSize := in_msg.MessageSize;
        out_msg.Prefetch := in_msg.Prefetch;
        out_msg.DataBlk := getDirectoryEntry(in_msg.Addr).DataBlk;

        DPRINTF(RubySlicc, "%s\n", out_msg);
      }
    }
  }

  action(qw_queueMemoryWBRequest, "qw", desc="Queue off-chip writeback request") {
    peek(responseNetwork_in, ResponseMsg) {
      enqueue(memQueue_out, MemoryMsg, to_mem_ctrl_latency) {
        out_msg.Addr := address;
        out_msg.Type := MemoryRequestType:MEMORY_WB;
        out_msg.Sender := machineID;
        out_msg.OriginalRequestorMachId := in_msg.Sender;
        out_msg.DataBlk := in_msg.DataBlk;
        out_msg.MessageSize := in_msg.MessageSize;
        //out_msg.Prefetch := in_msg.Prefetch;

        DPRINTF(RubySlicc, "%s\n", out_msg);
      }
    }
  }

  action(m_writeDataToMemory, "m", desc="Write dirty writeback to memory") {
    peek(responseNetwork_in, ResponseMsg) {
      getDirectoryEntry(in_msg.Addr).DataBlk := in_msg.DataBlk;
      DPRINTF(RubySlicc, "Address: %s, Data Block: %s\n",
              in_msg.Addr, in_msg.DataBlk);
    }
  }
//added by SS for dma
  action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") {
    peek(requestNetwork_in, RequestMsg) {
      enqueue(memQueue_out, MemoryMsg, to_mem_ctrl_latency) {
        out_msg.Addr := address;
        out_msg.Type := MemoryRequestType:MEMORY_READ;
        out_msg.Sender := machineID;
        out_msg.OriginalRequestorMachId := machineID;
        out_msg.MessageSize := in_msg.MessageSize;
        out_msg.DataBlk := getDirectoryEntry(address).DataBlk;
        DPRINTF(RubySlicc, "%s\n", out_msg);
      }
    }
  }

  action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") {
    requestNetwork_in.dequeue();
  }

  action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") {
    peek(memQueue_in, MemoryMsg) {
      enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
        out_msg.Addr := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.DataBlk := in_msg.DataBlk;   // we send the entire data block and rely on the dma controller to split it up if need be
        out_msg.Destination.add(map_Address_to_DMA(address));
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(dw_writeDMAData, "dw", desc="DMA Write data to memory") {
    peek(requestNetwork_in, RequestMsg) {
      getDirectoryEntry(address).DataBlk.copyPartial(in_msg.DataBlk, addressOffset(in_msg.Addr), in_msg.Len);
    }
  }

  action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") {
     peek(requestNetwork_in, RequestMsg) {
      enqueue(memQueue_out, MemoryMsg, to_mem_ctrl_latency) {
        out_msg.Addr := address;
        out_msg.Type := MemoryRequestType:MEMORY_WB;
        out_msg.OriginalRequestorMachId := machineID;
        //out_msg.DataBlk := in_msg.DataBlk;
        out_msg.DataBlk.copyPartial(in_msg.DataBlk, addressOffset(address), in_msg.Len);


        out_msg.MessageSize := in_msg.MessageSize;
        //out_msg.Prefetch := in_msg.Prefetch;

        DPRINTF(RubySlicc, "%s\n", out_msg);
      }
    }
  }

  action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") {
      enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
        out_msg.Addr := address;
        out_msg.Type := CoherenceResponseType:ACK;
        out_msg.Destination.add(map_Address_to_DMA(address));
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
  }

  action(z_stallAndWaitRequest, "z", desc="recycle request queue") {
    stall_and_wait(requestNetwork_in, address);
  }

  action(zz_recycleDMAQueue, "zz", desc="recycle DMA queue") {
    requestNetwork_in.recycle();
  }

  action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") {
    peek(requestNetwork_in, RequestMsg) {
      enqueue(responseNetwork_out, ResponseMsg, directory_latency) {
        out_msg.Addr := address;
        out_msg.Type := CoherenceResponseType:INV;
        out_msg.Sender := machineID;
        out_msg.Destination.add(getDirectoryEntry(address).Owner);
        out_msg.MessageSize := MessageSizeType:Response_Control;
      }
    }
  }


  action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") {
    peek(responseNetwork_in, ResponseMsg) {
      enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
        out_msg.Addr := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.DataBlk := in_msg.DataBlk;   // we send the entire data block and rely on the dma controller to split it up if need be
        out_msg.Destination.add(map_Address_to_DMA(address));
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(v_allocateTBE, "v", desc="Allocate TBE") {
    peek(requestNetwork_in, RequestMsg) {
      TBEs.allocate(address);
      set_tbe(TBEs[address]);
      tbe.DataBlk := in_msg.DataBlk;
      tbe.PhysicalAddress := in_msg.Addr;
      tbe.Len := in_msg.Len;
    }
  }

  action(dwt_writeDMADataFromTBE, "dwt", desc="DMA Write data to memory from TBE") {
    assert(is_valid(tbe));
    //getDirectoryEntry(address).DataBlk.copyPartial(tbe.DataBlk, tbe.Offset, tbe.Len);
    getDirectoryEntry(address).DataBlk.copyPartial(tbe.DataBlk, addressOffset(tbe.PhysicalAddress), tbe.Len);


  }


  action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") {
    peek(responseNetwork_in, ResponseMsg) {
      enqueue(memQueue_out, MemoryMsg, to_mem_ctrl_latency) {
        assert(is_valid(tbe));
        out_msg.Addr := address;
        out_msg.Type := MemoryRequestType:MEMORY_WB;
        out_msg.OriginalRequestorMachId := in_msg.Sender;
        //out_msg.DataBlk := in_msg.DataBlk;
        //out_msg.DataBlk.copyPartial(tbe.DataBlk, tbe.Offset, tbe.Len);
        out_msg.DataBlk.copyPartial(tbe.DataBlk, addressOffset(tbe.PhysicalAddress), tbe.Len);

        out_msg.MessageSize := in_msg.MessageSize;
        //out_msg.Prefetch := in_msg.Prefetch;

        DPRINTF(RubySlicc, "%s\n", out_msg);
      }
    }
  }

  action(w_deallocateTBE, "w", desc="Deallocate TBE") {
    TBEs.deallocate(address);
    unset_tbe();
  }


  // TRANSITIONS

  transition(I, Fetch, IM) {
    qf_queueMemoryFetchRequest;
    j_popIncomingRequestQueue;
  }

  transition(M, Fetch) {
    inv_sendCacheInvalidate;
    z_stallAndWaitRequest;
  }

  transition(IM, Memory_Data, M) {
    d_sendData;
    l_popMemQueue;
    kd_wakeUpDependents;
  }
//added by SS
  transition(M, CleanReplacement, I) {
    a_sendAck;
    k_popIncomingResponseQueue;
    kd_wakeUpDependents;
  }

  transition(M, Data, MI) {
    m_writeDataToMemory;
    qw_queueMemoryWBRequest;
    k_popIncomingResponseQueue;
  }

  transition(MI, Memory_Ack, I) {
    aa_sendAck;
    l_popMemQueue;
    kd_wakeUpDependents;
  }


//added by SS for dma support
  transition(I, DMA_READ, ID) {
    qf_queueMemoryFetchRequestDMA;
    j_popIncomingRequestQueue;
  }

  transition(ID, Memory_Data, I) {
    dr_sendDMAData;
    l_popMemQueue;
    kd_wakeUpDependents;
  }

  transition(I, DMA_WRITE, ID_W) {
    dw_writeDMAData;
    qw_queueMemoryWBRequest_partial;
    j_popIncomingRequestQueue;
  }

  transition(ID_W, Memory_Ack, I) {
    da_sendDMAAck;
    l_popMemQueue;
    kd_wakeUpDependents;
  }

  transition({ID, ID_W, M_DRDI, M_DWRI, IM, MI}, {Fetch, Data} ) {
    z_stallAndWaitRequest;
  }

  transition({ID, ID_W, M_DRD, M_DRDI, M_DWR, M_DWRI, IM, MI}, {DMA_WRITE, DMA_READ} ) {
    zz_recycleDMAQueue;
  }


  transition(M, DMA_READ, M_DRD) {
    inv_sendCacheInvalidate;
    j_popIncomingRequestQueue;
  }

  transition(M_DRD, Data, M_DRDI) {
    drp_sendDMAData;
    m_writeDataToMemory;
    qw_queueMemoryWBRequest;
    k_popIncomingResponseQueue;
  }

  transition(M_DRDI, Memory_Ack, I) {
    aa_sendAck;
    l_popMemQueue;
    kd_wakeUpDependents;
  }

  transition(M, DMA_WRITE, M_DWR) {
    v_allocateTBE;
    inv_sendCacheInvalidate;
    j_popIncomingRequestQueue;
  }

  transition(M_DWR, Data, M_DWRI) {
    m_writeDataToMemory;
    qw_queueMemoryWBRequest_partialTBE;
    k_popIncomingResponseQueue;
  }

  transition(M_DWRI, Memory_Ack, I) {
    dwt_writeDMADataFromTBE;
    aa_sendAck;
    da_sendDMAAck;
    w_deallocateTBE;
    l_popMemQueue;
    kd_wakeUpDependents;
  }
}