machine(L1Cache, "MI Example L1 Cache")
: int cache_response_latency,
  int issue_latency
{

  // NETWORK BUFFERS
  MessageBuffer requestFromCache, network="To", virtual_network="0", ordered="true";
  MessageBuffer responseFromCache, network="To", virtual_network="1", ordered="true";

  MessageBuffer forwardToCache, network="From", virtual_network="2", ordered="true";
  MessageBuffer responseToCache, network="From", virtual_network="1", ordered="true";

  // STATES
  enumeration(State, desc="Cache states") {
    I, desc="Not Present/Invalid";
    II, desc="Not Present/Invalid, issued PUT";
    M,  desc="Modified";
    MI,  desc="Modified, issued PUT";

    IS,  desc="Issued request for LOAD/IFETCH";
    IM,  desc="Issued request for STORE/ATOMIC";
  }

  // EVENTS
  enumeration(Event, desc="Cache events") {
    // From processor

    Load,       desc="Load request from processor";
    Ifetch,     desc="Ifetch request from processor";
    Store,      desc="Store request from processor";

    Data,       desc="Data from network";
    Fwd_GETX,        desc="Forward from network";

    Inv,        desc="Invalidate request from dir";

    Replacement,  desc="Replace a block";
    Writeback_Ack,   desc="Ack from the directory for a writeback";
    Writeback_Nack,   desc="Nack from the directory for a writeback";
  }

  // STRUCTURE DEFINITIONS

  MessageBuffer mandatoryQueue, ordered="false";
  Sequencer sequencer, factory='RubySystem::getSequencer(m_cfg["sequencer"])';

  // CacheEntry
  structure(Entry, desc="...", interface="AbstractCacheEntry") {
    State CacheState,        desc="cache state";
    bool Dirty,              desc="Is the data dirty (different than memory)?";
    DataBlock DataBlk,       desc="Data in the block";
  }


  external_type(CacheMemory) {
    bool cacheAvail(Address);
    Address cacheProbe(Address);
    void allocate(Address, Entry);
    void deallocate(Address);
    Entry lookup(Address);
    void changePermission(Address, AccessPermission);
    bool isTagPresent(Address);
    void profileMiss(CacheMsg);
  }

  // TBE fields
  structure(TBE, desc="...") {
    State TBEState,          desc="Transient state";
    DataBlock DataBlk,       desc="data for the block, required for concurrent writebacks";
  }

  external_type(TBETable) {
    TBE lookup(Address);
    void allocate(Address);
    void deallocate(Address);
    bool isPresent(Address);
  }


  // STRUCTURES

  CacheMemory cacheMemory, factory='RubySystem::getCache(m_cfg["cache"])';

  TBETable TBEs, template_hack="<L1Cache_TBE>";



  // FUNCTIONS
  Event mandatory_request_type_to_event(CacheRequestType type) {
   if (type == CacheRequestType:LD) {
      return Event:Load;
    } else if (type == CacheRequestType:IFETCH) {
      return Event:Ifetch;
    } else if ((type == CacheRequestType:ST) || (type == CacheRequestType:ATOMIC)) {
      return Event:Store;
    } else {
      error("Invalid CacheRequestType");
    }
  }


  State getState(Address addr) {

    if (TBEs.isPresent(addr)) {
      return TBEs[addr].TBEState;
    }
    else if (cacheMemory.isTagPresent(addr)) {
      return cacheMemory[addr].CacheState;
    }
    else {
      return State:I;
    }
  }

  void setState(Address addr, State state) {

    if (TBEs.isPresent(addr)) {
      TBEs[addr].TBEState := state;
    }

    if (cacheMemory.isTagPresent(addr)) {
      cacheMemory[addr].CacheState := state;
      if (state == State:M) {
        cacheMemory.changePermission(addr, AccessPermission:Read_Write);
      } else {
        cacheMemory.changePermission(addr, AccessPermission:Invalid);
      }
    }
  }


  // NETWORK PORTS

  out_port(requestNetwork_out, RequestMsg, requestFromCache);
  out_port(responseNetwork_out, ResponseMsg, responseFromCache);

  in_port(forwardRequestNetwork_in, RequestMsg, forwardToCache) {
    if (forwardRequestNetwork_in.isReady()) {
      peek(forwardRequestNetwork_in, RequestMsg) {
        if (in_msg.Type == CoherenceRequestType:GETX) {
          trigger(Event:Fwd_GETX, in_msg.Address);
        }
        else if (in_msg.Type == CoherenceRequestType:WB_ACK) {
          trigger(Event:Writeback_Ack, in_msg.Address);
        }
        else if (in_msg.Type == CoherenceRequestType:WB_NACK) {
          trigger(Event:Writeback_Nack, in_msg.Address);
        }
        else if (in_msg.Type == CoherenceRequestType:INV) {
          trigger(Event:Inv, in_msg.Address);
        }
        else {
          error("Unexpected message");
        }
      }
    }
  }

  in_port(responseNetwork_in, ResponseMsg, responseToCache) {
    if (responseNetwork_in.isReady()) {
      peek(responseNetwork_in, ResponseMsg) {
        if (in_msg.Type == CoherenceResponseType:DATA) {
          trigger(Event:Data, in_msg.Address);
        }
        else {
          error("Unexpected message");
        }
      }
    }
  }

    // Mandatory Queue
  in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") {
    if (mandatoryQueue_in.isReady()) {
      peek(mandatoryQueue_in, CacheMsg) {


        if (cacheMemory.isTagPresent(in_msg.LineAddress) == false &&
            cacheMemory.cacheAvail(in_msg.LineAddress) == false ) {
          // make room for the block
          trigger(Event:Replacement, cacheMemory.cacheProbe(in_msg.LineAddress));
        }
        else {
          trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress);
        }
      }
    }
  }

  // ACTIONS

  action(a_issueRequest, "a", desc="Issue a request") {
    enqueue(requestNetwork_out, RequestMsg, latency=issue_latency) {
    out_msg.Address := address;
      out_msg.Type := CoherenceRequestType:GETX;
      out_msg.Requestor := machineID;
      out_msg.Destination.add(map_Address_to_Directory(address));
      out_msg.MessageSize := MessageSizeType:Control;
    }
  }

  action(b_issuePUT, "b", desc="Issue a PUT request") {
    enqueue(requestNetwork_out, RequestMsg, latency=issue_latency) {
      out_msg.Address := address;
      out_msg.Type := CoherenceRequestType:PUTX;
      out_msg.Requestor := machineID;
      out_msg.Destination.add(map_Address_to_Directory(address));
      out_msg.DataBlk := cacheMemory[address].DataBlk;
      out_msg.MessageSize := MessageSizeType:Data;
    }
  }


  action(e_sendData, "e", desc="Send data from cache to requestor") {
    peek(forwardRequestNetwork_in, RequestMsg) {
      enqueue(responseNetwork_out, ResponseMsg, latency=cache_response_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.DataBlk := cacheMemory[address].DataBlk;
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(ee_sendDataFromTBE, "\e", desc="Send data from TBE to requestor") {
    peek(forwardRequestNetwork_in, RequestMsg) {
      enqueue(responseNetwork_out, ResponseMsg, latency=cache_response_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.DataBlk := TBEs[address].DataBlk;
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }


  action(i_allocateL1CacheBlock, "i", desc="Allocate a cache block") {
    if (cacheMemory.isTagPresent(address) == false) {
      cacheMemory.allocate(address, new Entry);
    }
  }

  action(h_deallocateL1CacheBlock, "h", desc="deallocate a cache block") {
    if (cacheMemory.isTagPresent(address) == true) {
      cacheMemory.deallocate(address);
    }
  }

  action(m_popMandatoryQueue, "m", desc="Pop the mandatory request queue") {
    mandatoryQueue_in.dequeue();
  }

  action(n_popResponseQueue, "n", desc="Pop the response queue") {
    profileMsgDelay(1, responseNetwork_in.dequeue_getDelayCycles());
  }

  action(o_popForwardedRequestQueue, "o", desc="Pop the forwarded request queue") {
    profileMsgDelay(2, forwardRequestNetwork_in.dequeue_getDelayCycles());
  }

  action(p_profileMiss, "p", desc="Profile cache miss") {
    peek(mandatoryQueue_in, CacheMsg) {
      cacheMemory.profileMiss(in_msg);
    }
  }

  action(r_load_hit, "r", desc="Notify sequencer the load completed.") {
    DEBUG_EXPR(cacheMemory[address].DataBlk);
    sequencer.readCallback(address, cacheMemory[address].DataBlk);
  }

  action(s_store_hit, "s", desc="Notify sequencer that store completed.") {
    DEBUG_EXPR(cacheMemory[address].DataBlk);
    sequencer.writeCallback(address, cacheMemory[address].DataBlk);
  }


  action(u_writeDataToCache, "u", desc="Write data to the cache") {
    peek(responseNetwork_in, ResponseMsg) {
      cacheMemory[address].DataBlk := in_msg.DataBlk;
    }
  }


  action(v_allocateTBE, "v", desc="Allocate TBE") {
    TBEs.allocate(address);
  }


  action(w_deallocateTBE, "w", desc="Deallocate TBE") {
    TBEs.deallocate(address);
  }

  action(x_copyDataFromCacheToTBE, "x", desc="Copy data from cache to TBE") {
    TBEs[address].DataBlk := cacheMemory[address].DataBlk;
  }

  action(z_stall, "z", desc="stall") {
    // do nothing
  }

  // TRANSITIONS

  transition({IS, IM, MI, II}, {Load, Ifetch, Store, Replacement}) {
    z_stall;
  }

  transition({IS, IM}, {Fwd_GETX, Inv}) {
    z_stall;
  }

  transition(MI, Inv) {
    o_popForwardedRequestQueue;
  }

  transition(M, Store) {
    s_store_hit;
    m_popMandatoryQueue;
  }

  transition(M, {Load, Ifetch}) {
    r_load_hit;
    m_popMandatoryQueue;
  }

  transition(I, Inv) {
    o_popForwardedRequestQueue;
  }

  transition(I, Store, IM) {
    v_allocateTBE;
    i_allocateL1CacheBlock;
    a_issueRequest;
    p_profileMiss;
    m_popMandatoryQueue;
  }

  transition(I, {Load, Ifetch}, IS) {
    v_allocateTBE;
    i_allocateL1CacheBlock;
    a_issueRequest;
    p_profileMiss;
    m_popMandatoryQueue;
  }

  transition(IS, Data, M) {
    u_writeDataToCache;
    r_load_hit;
    w_deallocateTBE;
    n_popResponseQueue;
  }

  transition(IM, Data, M) {
    u_writeDataToCache;
    s_store_hit;
    w_deallocateTBE;
    n_popResponseQueue;
  }

  transition(M, Fwd_GETX, I) {
    e_sendData;
    o_popForwardedRequestQueue;
  }

  transition(I, Replacement) {
     h_deallocateL1CacheBlock;
  }

  transition(M, {Replacement,Inv},  MI) {
     v_allocateTBE;
     b_issuePUT;
     x_copyDataFromCacheToTBE;
     h_deallocateL1CacheBlock;
  }

  transition(MI, Writeback_Ack, I) {
    w_deallocateTBE;
    o_popForwardedRequestQueue;
  }

  transition(MI, Fwd_GETX, II) {
    ee_sendDataFromTBE;
    o_popForwardedRequestQueue;
  }

  transition(II, Writeback_Nack, I) {
    w_deallocateTBE;
    o_popForwardedRequestQueue;
  }
}