machine(Directory, "Directory protocol") 
: DirectoryMemory * directory,
  MemoryControl * memBuffer,
  int directory_latency = 12
{

  MessageBuffer forwardFromDir, network="To", virtual_network="3", ordered="false", vnet_type="forward";
  MessageBuffer responseFromDir, network="To", virtual_network="4", ordered="false", vnet_type="response";
  MessageBuffer dmaResponseFromDir, network="To", virtual_network="1", ordered="true", vnet_type="response";

  MessageBuffer requestToDir, network="From", virtual_network="2", ordered="true", vnet_type="request";
  MessageBuffer dmaRequestToDir, network="From", virtual_network="0", ordered="true", vnet_type="request";

  // STATES
  state_declaration(State, desc="Directory states", default="Directory_State_I") {
    // Base states
    I, AccessPermission:Read_Write, desc="Invalid";
    M, AccessPermission:Invalid, desc="Modified";

    M_DRD, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA read";
    M_DWR, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA write";

    M_DWRI, AccessPermission:Busy, desc="Intermediate state M_DWR-->I"; 
    M_DRDI, AccessPermission:Busy, desc="Intermediate state M_DRD-->I";

    IM, AccessPermission:Busy, desc="Intermediate state I-->M";
    MI, AccessPermission:Busy, desc="Intermediate state M-->I";
    ID, AccessPermission:Busy, desc="Intermediate state for DMA_READ when in I";
    ID_W, AccessPermission:Busy, desc="Intermediate state for DMA_WRITE when in I";
  }

  // Events
  enumeration(Event, desc="Directory events") {
    // processor requests
    GETX, desc="A GETX arrives";
    GETS, desc="A GETS arrives";
    PUTX, desc="A PUTX arrives";
    PUTX_NotOwner, desc="A PUTX arrives";

    // DMA requests
    DMA_READ, desc="A DMA Read memory request";
    DMA_WRITE, desc="A DMA Write memory request";

    // Memory Controller
    Memory_Data, desc="Fetched data from memory arrives";
    Memory_Ack, desc="Writeback Ack from memory arrives";
  }

  // TYPES

  // DirectoryEntry
  structure(Entry, desc="...", interface="AbstractEntry") {
    State DirectoryState,          desc="Directory state";
    DataBlock DataBlk,             desc="data for the block";
    NetDest Sharers,                   desc="Sharers for this block";
    NetDest Owner,                     desc="Owner of this block";
  }

  // TBE entries for DMA requests
  structure(TBE, desc="TBE entries for outstanding DMA requests") {
    Address PhysicalAddress, desc="physical address";
    State TBEState,        desc="Transient State";
    DataBlock DataBlk,     desc="Data to be written (DMA write only)";
    int Len,               desc="...";
    MachineID DmaRequestor, desc="DMA requestor";
  }

  structure(TBETable, external="yes") {
    TBE lookup(Address);
    void allocate(Address);
    void deallocate(Address);
    bool isPresent(Address);
  }

  // ** OBJECTS **
  TBETable TBEs, template_hack="<Directory_TBE>";

  void set_tbe(TBE b);
  void unset_tbe();

  Entry getDirectoryEntry(Address addr), return_by_pointer="yes" {
    Entry dir_entry := static_cast(Entry, "pointer", directory[addr]);

    if (is_valid(dir_entry)) {
      return dir_entry;
    }

    dir_entry :=  static_cast(Entry, "pointer",
                              directory.allocate(addr, new Entry));
    return dir_entry;
  }
 
  State getState(TBE tbe, Address addr) {
    if (is_valid(tbe)) {
      return tbe.TBEState;
    } else if (directory.isPresent(addr)) {
      return getDirectoryEntry(addr).DirectoryState;
    } else {
      return State:I;
    }
  }

  void setState(TBE tbe, Address addr, State state) {

    if (is_valid(tbe)) {
      tbe.TBEState := state;
    }

    if (directory.isPresent(addr)) {

      if (state == State:M) {
        assert(getDirectoryEntry(addr).Owner.count() == 1);
        assert(getDirectoryEntry(addr).Sharers.count() == 0);
      }

      getDirectoryEntry(addr).DirectoryState := state;
    
      if (state == State:I)  {
        assert(getDirectoryEntry(addr).Owner.count() == 0);
        assert(getDirectoryEntry(addr).Sharers.count() == 0);
        directory.invalidateBlock(addr);
      }
    }
  }

  AccessPermission getAccessPermission(Address addr) {
    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      return Directory_State_to_permission(tbe.TBEState);
    }

    if(directory.isPresent(addr)) {
      return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState);
    }

    return AccessPermission:NotPresent;
  }

  void setAccessPermission(Address addr, State state) {
    if (directory.isPresent(addr)) {
      getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state));
    }
  }

  DataBlock getDataBlock(Address addr), return_by_ref="yes" {
    return getDirectoryEntry(addr).DataBlk;
  }

  // ** OUT_PORTS **
  out_port(forwardNetwork_out, RequestMsg, forwardFromDir);
  out_port(responseNetwork_out, ResponseMsg, responseFromDir);
  out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests
  out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaResponseFromDir);

//added by SS
  out_port(memQueue_out, MemoryMsg, memBuffer);
  // ** IN_PORTS **

  in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) {
    if (dmaRequestQueue_in.isReady()) {
      peek(dmaRequestQueue_in, DMARequestMsg) {
        TBE tbe := TBEs[in_msg.LineAddress];
        if (in_msg.Type == DMARequestType:READ) {
          trigger(Event:DMA_READ, in_msg.LineAddress, tbe);
        } else if (in_msg.Type == DMARequestType:WRITE) {
          trigger(Event:DMA_WRITE, in_msg.LineAddress, tbe);
        } else {
          error("Invalid message");
        }
      }
    }
  }

  in_port(requestQueue_in, RequestMsg, requestToDir) {
    if (requestQueue_in.isReady()) {
      peek(requestQueue_in, RequestMsg) {
        TBE tbe := TBEs[in_msg.Address];
        if (in_msg.Type == CoherenceRequestType:GETS) {
          trigger(Event:GETS, in_msg.Address, tbe);
        } else if (in_msg.Type == CoherenceRequestType:GETX) {
          trigger(Event:GETX, in_msg.Address, tbe);
        } else if (in_msg.Type == CoherenceRequestType:PUTX) {
          if (getDirectoryEntry(in_msg.Address).Owner.isElement(in_msg.Requestor)) {
            trigger(Event:PUTX, in_msg.Address, tbe);
          } else {
            trigger(Event:PUTX_NotOwner, in_msg.Address, tbe);
          }
        } else {
          error("Invalid message");
        }
      }
    }
  }

//added by SS
  // off-chip memory request/response is done
  in_port(memQueue_in, MemoryMsg, memBuffer) {
    if (memQueue_in.isReady()) {
      peek(memQueue_in, MemoryMsg) {
        TBE tbe := TBEs[in_msg.Address];
        if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
          trigger(Event:Memory_Data, in_msg.Address, tbe);
        } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
          trigger(Event:Memory_Ack, in_msg.Address, tbe);
        } else {
          DPRINTF(RubySlicc,"%s\n", in_msg.Type);
          error("Invalid message");
        }
      }
    }
  }

  // Actions

  action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") {
    peek(requestQueue_in, RequestMsg) {
      enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:WB_ACK;
        out_msg.Requestor := in_msg.Requestor;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(l_sendWriteBackAck, "la", desc="Send writeback ack to requestor") {
    peek(memQueue_in, MemoryMsg) {
      enqueue(forwardNetwork_out, RequestMsg, latency="1") {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:WB_ACK;
        out_msg.Requestor := in_msg.OriginalRequestorMachId;
        out_msg.Destination.add(in_msg.OriginalRequestorMachId);
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") {
    peek(requestQueue_in, RequestMsg) {
      enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:WB_NACK;
        out_msg.Requestor := in_msg.Requestor;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(c_clearOwner, "c", desc="Clear the owner field") {
    getDirectoryEntry(address).Owner.clear();
  }

  action(d_sendData, "d", desc="Send data to requestor") {
    peek(memQueue_in, MemoryMsg) {
      enqueue(responseNetwork_out, ResponseMsg, latency="1") {
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.OriginalRequestorMachId);
        out_msg.DataBlk := in_msg.DataBlk;
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") {
    peek(memQueue_in, MemoryMsg) {
      enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") {
        assert(is_valid(tbe));
        out_msg.PhysicalAddress := address;
        out_msg.LineAddress := address;
        out_msg.Type := DMAResponseType:DATA;
        out_msg.DataBlk := in_msg.DataBlk;   // we send the entire data block and rely on the dma controller to split it up if need be
        out_msg.Destination.add(tbe.DmaRequestor);
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }



  action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") {
    peek(requestQueue_in, RequestMsg) {
      enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") {
        assert(is_valid(tbe));
        out_msg.PhysicalAddress := address;
        out_msg.LineAddress := address;
        out_msg.Type := DMAResponseType:DATA;
        out_msg.DataBlk := in_msg.DataBlk;   // we send the entire data block and rely on the dma controller to split it up if need be
        out_msg.Destination.add(tbe.DmaRequestor);
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") {
      enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") {
        assert(is_valid(tbe));
        out_msg.PhysicalAddress := address;
        out_msg.LineAddress := address;
        out_msg.Type := DMAResponseType:ACK;
        out_msg.Destination.add(tbe.DmaRequestor); 
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
  }

  action(e_ownerIsRequestor, "e", desc="The owner is now the requestor") {
    peek(requestQueue_in, RequestMsg) {
      getDirectoryEntry(address).Owner.clear();
      getDirectoryEntry(address).Owner.add(in_msg.Requestor);
    }
  }

  action(f_forwardRequest, "f", desc="Forward request to owner") {
    peek(requestQueue_in, RequestMsg) {
      APPEND_TRANSITION_COMMENT("Own: ");
      APPEND_TRANSITION_COMMENT(getDirectoryEntry(in_msg.Address).Owner);
      APPEND_TRANSITION_COMMENT("Req: ");
      APPEND_TRANSITION_COMMENT(in_msg.Requestor);
      enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) {
        out_msg.Address := address;
        out_msg.Type := in_msg.Type;
        out_msg.Requestor := in_msg.Requestor;
        out_msg.Destination := getDirectoryEntry(in_msg.Address).Owner;
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") {
    peek(dmaRequestQueue_in, DMARequestMsg) {
      enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:INV;
        out_msg.Requestor := machineID;
        out_msg.Destination := getDirectoryEntry(in_msg.PhysicalAddress).Owner;
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
    requestQueue_in.dequeue();
  }

  action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") {
    dmaRequestQueue_in.dequeue();
  }

  action(l_writeDataToMemory, "pl", desc="Write PUTX data to memory") {
    peek(requestQueue_in, RequestMsg) {
      // assert(in_msg.Dirty);
      // assert(in_msg.MessageSize == MessageSizeType:Writeback_Data);
      getDirectoryEntry(in_msg.Address).DataBlk := in_msg.DataBlk;
      //getDirectoryEntry(in_msg.Address).DataBlk.copyPartial(in_msg.DataBlk, addressOffset(in_msg.Address), in_msg.Len);
    }
  }
  
  action(dwt_writeDMADataFromTBE, "dwt", desc="DMA Write data to memory from TBE") {
    assert(is_valid(tbe));
    getDirectoryEntry(address).DataBlk.copyPartial(tbe.DataBlk, addressOffset(tbe.PhysicalAddress), tbe.Len);
  }

  action(v_allocateTBE, "v", desc="Allocate TBE") {
    peek(dmaRequestQueue_in, DMARequestMsg) {
      TBEs.allocate(address);
      set_tbe(TBEs[address]);
      tbe.DataBlk := in_msg.DataBlk;
      tbe.PhysicalAddress := in_msg.PhysicalAddress;
      tbe.Len := in_msg.Len;
      tbe.DmaRequestor := in_msg.Requestor;
    }
  }

  action(r_allocateTbeForDmaRead, "\r", desc="Allocate TBE for DMA Read") {
    peek(dmaRequestQueue_in, DMARequestMsg) {
      TBEs.allocate(address);
      set_tbe(TBEs[address]);
      tbe.DmaRequestor := in_msg.Requestor;
    }
  }

  action(v_allocateTBEFromRequestNet, "\v", desc="Allocate TBE") {
    peek(requestQueue_in, RequestMsg) {
      TBEs.allocate(address);
      set_tbe(TBEs[address]);
      tbe.DataBlk := in_msg.DataBlk;
    }
  }

  action(w_deallocateTBE, "w", desc="Deallocate TBE") {
    TBEs.deallocate(address);
    unset_tbe();
  }

  action(z_recycleRequestQueue, "z", desc="recycle request queue") {
    requestQueue_in.recycle();
  }

  action(y_recycleDMARequestQueue, "y", desc="recycle dma request queue") {
    dmaRequestQueue_in.recycle();
  }


  action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
    peek(requestQueue_in, RequestMsg) {
      enqueue(memQueue_out, MemoryMsg, latency="1") {
        out_msg.Address := address;
        out_msg.Type := MemoryRequestType:MEMORY_READ;
        out_msg.Sender := machineID;
        out_msg.OriginalRequestorMachId := in_msg.Requestor;
        out_msg.MessageSize := in_msg.MessageSize;
        out_msg.DataBlk := getDirectoryEntry(in_msg.Address).DataBlk;
        DPRINTF(RubySlicc,"%s\n", out_msg);
      }
    }
  }

  action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") {
    peek(dmaRequestQueue_in, DMARequestMsg) {
      enqueue(memQueue_out, MemoryMsg, latency="1") {
        out_msg.Address := address;
        out_msg.Type := MemoryRequestType:MEMORY_READ;
        out_msg.Sender := machineID;
        //out_msg.OriginalRequestorMachId := machineID;
        out_msg.MessageSize := in_msg.MessageSize;
        out_msg.DataBlk := getDirectoryEntry(address).DataBlk;
        DPRINTF(RubySlicc,"%s\n", out_msg);
      }
    }
  }

  action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") {
     peek(dmaRequestQueue_in, DMARequestMsg) {
      enqueue(memQueue_out, MemoryMsg, latency="1") {
        out_msg.Address := address;
        out_msg.Type := MemoryRequestType:MEMORY_WB;
        //out_msg.OriginalRequestorMachId := machineID;
        //out_msg.DataBlk := in_msg.DataBlk;
        out_msg.DataBlk.copyPartial(in_msg.DataBlk, addressOffset(in_msg.PhysicalAddress), in_msg.Len);
        out_msg.MessageSize := in_msg.MessageSize;
        //out_msg.Prefetch := in_msg.Prefetch;

        DPRINTF(RubySlicc,"%s\n", out_msg);
      }
    }
  }

  action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") {
    peek(requestQueue_in, RequestMsg) {
      enqueue(memQueue_out, MemoryMsg, latency="1") {
        assert(is_valid(tbe));
        out_msg.Address := address;
        out_msg.Type := MemoryRequestType:MEMORY_WB;
        out_msg.OriginalRequestorMachId := in_msg.Requestor;
        // get incoming data
        // out_msg.DataBlk := in_msg.DataBlk;
        out_msg.DataBlk.copyPartial(tbe.DataBlk, addressOffset(tbe.PhysicalAddress), tbe.Len);
        out_msg.MessageSize := in_msg.MessageSize;
        //out_msg.Prefetch := in_msg.Prefetch;

        DPRINTF(RubySlicc,"%s\n", out_msg);
      }
    }
  }



  action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") {
    peek(requestQueue_in, RequestMsg) {
      enqueue(memQueue_out, MemoryMsg, latency="1") {
        out_msg.Address := address;
        out_msg.Type := MemoryRequestType:MEMORY_WB;
        out_msg.Sender := machineID;
        out_msg.OriginalRequestorMachId := in_msg.Requestor;
        out_msg.DataBlk := in_msg.DataBlk;
        out_msg.MessageSize := in_msg.MessageSize;
        //out_msg.Prefetch := in_msg.Prefetch;

        DPRINTF(RubySlicc,"%s\n", out_msg);
      }
    }
  }

  action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
    memQueue_in.dequeue();
  }

  action(w_writeDataToMemoryFromTBE, "\w", desc="Write date to directory memory from TBE") {
    //getDirectoryEntry(address).DataBlk := TBEs[address].DataBlk;
    assert(is_valid(tbe));
    getDirectoryEntry(address).DataBlk.copyPartial(tbe.DataBlk, 
                                addressOffset(tbe.PhysicalAddress), 
                                tbe.Len);

  }

  // TRANSITIONS

  transition({M_DRD, M_DWR, M_DWRI, M_DRDI}, GETX) {
    z_recycleRequestQueue;
  }

  transition({IM, MI, ID, ID_W}, {GETX, GETS, PUTX, PUTX_NotOwner} ) {
    z_recycleRequestQueue;
  }
 
  transition({IM, MI, ID, ID_W}, {DMA_READ, DMA_WRITE} ) {
    y_recycleDMARequestQueue;
  }


  transition(I, GETX, IM) {
    //d_sendData;
    qf_queueMemoryFetchRequest;
    e_ownerIsRequestor;
    i_popIncomingRequestQueue;
  }

  transition(IM, Memory_Data, M) {
    d_sendData;
    //e_ownerIsRequestor;
    l_popMemQueue;
  }


  transition(I, DMA_READ, ID) {
    //dr_sendDMAData;
    r_allocateTbeForDmaRead;
    qf_queueMemoryFetchRequestDMA;
    p_popIncomingDMARequestQueue;
  }

  transition(ID, Memory_Data, I) {
    dr_sendDMAData;
    //p_popIncomingDMARequestQueue;
    w_deallocateTBE;
    l_popMemQueue;
  }



  transition(I, DMA_WRITE, ID_W) {
    v_allocateTBE;
    qw_queueMemoryWBRequest_partial;
    p_popIncomingDMARequestQueue;
  }

  transition(ID_W, Memory_Ack, I) {
    dwt_writeDMADataFromTBE;
    da_sendDMAAck;
    w_deallocateTBE;
    l_popMemQueue;
  }

  transition(M, DMA_READ, M_DRD) {
    v_allocateTBE;
    inv_sendCacheInvalidate;
    p_popIncomingDMARequestQueue;
  }

  transition(M_DRD, PUTX, M_DRDI) {     
    l_writeDataToMemory;
    drp_sendDMAData;
    c_clearOwner;
    l_queueMemoryWBRequest;
    i_popIncomingRequestQueue;
  }

  transition(M_DRDI, Memory_Ack, I) {
    l_sendWriteBackAck;
    w_deallocateTBE;   
    l_popMemQueue;
  }


  transition(M, DMA_WRITE, M_DWR) {
    v_allocateTBE;
    inv_sendCacheInvalidate;
    p_popIncomingDMARequestQueue;
  }

  transition(M_DWR, PUTX, M_DWRI) {
    l_writeDataToMemory;
    qw_queueMemoryWBRequest_partialTBE;
    c_clearOwner;
    i_popIncomingRequestQueue;
  }

  transition(M_DWRI, Memory_Ack, I) {
    w_writeDataToMemoryFromTBE;
    l_sendWriteBackAck;
    da_sendDMAAck;
    w_deallocateTBE;
    l_popMemQueue;
  }

  transition(M, GETX, M) {
    f_forwardRequest;
    e_ownerIsRequestor;
    i_popIncomingRequestQueue;
  }

  transition(M, PUTX, MI) {
    l_writeDataToMemory;
    c_clearOwner;
    v_allocateTBEFromRequestNet;
    l_queueMemoryWBRequest;
    i_popIncomingRequestQueue;
  }

  transition(MI, Memory_Ack, I) {
    w_writeDataToMemoryFromTBE;
    l_sendWriteBackAck;
    w_deallocateTBE;
    l_popMemQueue;
  }

  transition(M, PUTX_NotOwner, M) {
    b_sendWriteBackNack;
    i_popIncomingRequestQueue;
  }

  transition(I, PUTX_NotOwner, I) {
    b_sendWriteBackNack;
    i_popIncomingRequestQueue;
  }

}