/* * Copyright (c) 2010-2015 Advanced Micro Devices, Inc. * All rights reserved. * * For use for simulation and test purposes only * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Authors: Lisa Hsu */ machine(MachineType:L3Cache, "L3") : CacheMemory * L3cache; WireBuffer * reqToDir; WireBuffer * respToDir; WireBuffer * l3UnblockToDir; WireBuffer * reqToL3; WireBuffer * probeToL3; WireBuffer * respToL3; Cycles l3_request_latency := 1; Cycles l3_response_latency := 35; // To the general response network MessageBuffer * responseFromL3, network="To", virtual_network="2", ordered="false", vnet_type="response"; // From the general response network MessageBuffer * responseToL3, network="From", virtual_network="2", ordered="false", vnet_type="response"; { // EVENTS enumeration(Event, desc="L3 Events") { // Requests coming from the Cores RdBlk, desc="CPU RdBlk event"; RdBlkM, desc="CPU RdBlkM event"; RdBlkS, desc="CPU RdBlkS event"; CtoD, desc="Change to Dirty request"; WrVicBlk, desc="L2 Victim (dirty)"; WrVicBlkShared, desc="L2 Victim (dirty)"; ClVicBlk, desc="L2 Victim (clean)"; ClVicBlkShared, desc="L2 Victim (clean)"; CPUData, desc="WB data from CPU"; CPUDataShared, desc="WB data from CPU, NBReqShared 1"; StaleWB, desc="WB stale; no data"; L3_Repl, desc="L3 Replacement"; // Probes PrbInvData, desc="Invalidating probe, return dirty data"; PrbInv, desc="Invalidating probe, no need to return data"; PrbShrData, desc="Downgrading probe, return data"; // Coming from Memory Controller WBAck, desc="ack from memory"; CancelWB, desc="Cancel WB from L2"; } // STATES // Base States: state_declaration(State, desc="L3 State", default="L3Cache_State_I") { M, AccessPermission:Read_Write, desc="Modified"; // No other cache has copy, memory stale O, AccessPermission:Read_Only, desc="Owned"; // Correct most recent copy, others may exist in S E, AccessPermission:Read_Write, desc="Exclusive"; // Correct, most recent, and only copy (and == Memory) S, AccessPermission:Read_Only, desc="Shared"; // Correct, most recent. If no one in O, then == Memory I, AccessPermission:Invalid, desc="Invalid"; I_M, AccessPermission:Busy, desc="Invalid, received WrVicBlk, sent Ack, waiting for Data"; I_O, AccessPermission:Busy, desc="Invalid, received WrVicBlk, sent Ack, waiting for Data"; I_E, AccessPermission:Busy, desc="Invalid, receive ClVicBlk, sent Ack, waiting for Data"; I_S, AccessPermission:Busy, desc="Invalid, receive ClVicBlk, sent Ack, waiting for Data"; S_M, AccessPermission:Busy, desc="received WrVicBlk, sent Ack, waiting for Data, then go to M"; S_O, AccessPermission:Busy, desc="received WrVicBlkShared, sent Ack, waiting for Data, then go to O"; S_E, AccessPermission:Busy, desc="Shared, received ClVicBlk, sent Ack, waiting for Data, then go to E"; S_S, AccessPermission:Busy, desc="Shared, received ClVicBlk, sent Ack, waiting for Data, then go to S"; E_M, AccessPermission:Busy, desc="received WrVicBlk, sent Ack, waiting for Data, then go to O"; E_O, AccessPermission:Busy, desc="received WrVicBlkShared, sent Ack, waiting for Data, then go to O"; E_E, AccessPermission:Busy, desc="received WrVicBlk, sent Ack, waiting for Data, then go to O"; E_S, AccessPermission:Busy, desc="Shared, received WrVicBlk, sent Ack, waiting for Data"; O_M, AccessPermission:Busy, desc="..."; O_O, AccessPermission:Busy, desc="..."; O_E, AccessPermission:Busy, desc="..."; O_S, AccessPermission:Busy, desc="..."; M_M, AccessPermission:Busy, desc="..."; M_O, AccessPermission:Busy, desc="..."; M_E, AccessPermission:Busy, desc="..."; M_S, AccessPermission:Busy, desc="..."; D_I, AccessPermission:Invalid, desc="drop WB data on the floor when receive"; MOD_I, AccessPermission:Busy, desc="drop WB data on the floor, waiting for WBAck from Mem"; MO_I, AccessPermission:Busy, desc="M or O, received L3_Repl, waiting for WBAck from Mem"; I_I, AccessPermission:Busy, desc="I_MO received L3_Repl"; I_CD, AccessPermission:Busy, desc="I_I received WBAck, now just waiting for CPUData"; I_C, AccessPermission:Invalid, desc="sent cancel, just waiting to receive mem wb ack so nothing gets confused"; } enumeration(RequestType, desc="To communicate stats from transitions to recordStats") { DataArrayRead, desc="Read the data array"; DataArrayWrite, desc="Write the data array"; TagArrayRead, desc="Read the data array"; TagArrayWrite, desc="Write the data array"; } // STRUCTURES structure(Entry, desc="...", interface="AbstractCacheEntry") { State CacheState, desc="cache state"; bool Dirty, desc="Is the data dirty (diff from memory?)"; DataBlock DataBlk, desc="Data for the block"; } structure(TBE, desc="...") { State TBEState, desc="Transient state"; DataBlock DataBlk, desc="data for the block"; bool Dirty, desc="Is the data dirty?"; bool Shared, desc="Victim hit by shared probe"; MachineID From, desc="Waiting for writeback from..."; } structure(TBETable, external="yes") { TBE lookup(Addr); void allocate(Addr); void deallocate(Addr); bool isPresent(Addr); } TBETable TBEs, template="", constructor="m_number_of_TBEs"; void set_cache_entry(AbstractCacheEntry b); void unset_cache_entry(); void set_tbe(TBE b); void unset_tbe(); void wakeUpAllBuffers(); void wakeUpBuffers(Addr a); MachineID mapAddressToMachine(Addr addr, MachineType mtype); // FUNCTION DEFINITIONS Tick clockEdge(); Tick cyclesToTicks(Cycles c); Entry getCacheEntry(Addr addr), return_by_pointer="yes" { return static_cast(Entry, "pointer", L3cache.lookup(addr)); } DataBlock getDataBlock(Addr addr), return_by_ref="yes" { return getCacheEntry(addr).DataBlk; } bool presentOrAvail(Addr addr) { return L3cache.isTagPresent(addr) || L3cache.cacheAvail(addr); } State getState(TBE tbe, Entry cache_entry, Addr addr) { if (is_valid(tbe)) { return tbe.TBEState; } else if (is_valid(cache_entry)) { return cache_entry.CacheState; } return State:I; } void setState(TBE tbe, Entry cache_entry, Addr addr, State state) { if (is_valid(tbe)) { tbe.TBEState := state; } if (is_valid(cache_entry)) { cache_entry.CacheState := state; } } void functionalRead(Addr addr, Packet *pkt) { TBE tbe := TBEs.lookup(addr); if(is_valid(tbe)) { testAndRead(addr, tbe.DataBlk, pkt); } else { functionalMemoryRead(pkt); } } int functionalWrite(Addr addr, Packet *pkt) { int num_functional_writes := 0; TBE tbe := TBEs.lookup(addr); if(is_valid(tbe)) { num_functional_writes := num_functional_writes + testAndWrite(addr, tbe.DataBlk, pkt); } num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt); return num_functional_writes; } AccessPermission getAccessPermission(Addr addr) { TBE tbe := TBEs.lookup(addr); if(is_valid(tbe)) { return L3Cache_State_to_permission(tbe.TBEState); } Entry cache_entry := getCacheEntry(addr); if(is_valid(cache_entry)) { return L3Cache_State_to_permission(cache_entry.CacheState); } return AccessPermission:NotPresent; } void setAccessPermission(Entry cache_entry, Addr addr, State state) { if (is_valid(cache_entry)) { cache_entry.changePermission(L3Cache_State_to_permission(state)); } } void recordRequestType(RequestType request_type, Addr addr) { } bool checkResourceAvailable(RequestType request_type, Addr addr) { return true; } // OUT PORTS out_port(requestNetwork_out, CPURequestMsg, reqToDir); out_port(L3Resp_out, ResponseMsg, respToDir); out_port(responseNetwork_out, ResponseMsg, responseFromL3); out_port(unblockNetwork_out, UnblockMsg, l3UnblockToDir); // IN PORTS in_port(NBResponse_in, ResponseMsg, respToL3) { if (NBResponse_in.isReady(clockEdge())) { peek(NBResponse_in, ResponseMsg) { Entry cache_entry := getCacheEntry(in_msg.addr); TBE tbe := TBEs.lookup(in_msg.addr); if (in_msg.Type == CoherenceResponseType:NBSysWBAck) { trigger(Event:WBAck, in_msg.addr, cache_entry, tbe); } else { DPRINTF(RubySlicc, "%s\n", in_msg); error("Error on NBResponse Type"); } } } } // Response Network in_port(responseNetwork_in, ResponseMsg, responseToL3) { if (responseNetwork_in.isReady(clockEdge())) { peek(responseNetwork_in, ResponseMsg) { Entry cache_entry := getCacheEntry(in_msg.addr); TBE tbe := TBEs.lookup(in_msg.addr); if (in_msg.Type == CoherenceResponseType:CPUData) { if (in_msg.NbReqShared) { trigger(Event:CPUDataShared, in_msg.addr, cache_entry, tbe); } else { trigger(Event:CPUData, in_msg.addr, cache_entry, tbe); } } else if (in_msg.Type == CoherenceResponseType:StaleNotif) { trigger(Event:StaleWB, in_msg.addr, cache_entry, tbe); } else { DPRINTF(RubySlicc, "%s\n", in_msg); error("Error on NBResponse Type"); } } } } // probe network in_port(probeNetwork_in, NBProbeRequestMsg, probeToL3) { if (probeNetwork_in.isReady(clockEdge())) { peek(probeNetwork_in, NBProbeRequestMsg) { Entry cache_entry := getCacheEntry(in_msg.addr); TBE tbe := TBEs.lookup(in_msg.addr); if (in_msg.Type == ProbeRequestType:PrbInv) { if (in_msg.ReturnData) { trigger(Event:PrbInvData, in_msg.addr, cache_entry, tbe); } else { trigger(Event:PrbInv, in_msg.addr, cache_entry, tbe); } } else if (in_msg.Type == ProbeRequestType:PrbDowngrade) { if (in_msg.ReturnData) { trigger(Event:PrbShrData, in_msg.addr, cache_entry, tbe); } else { error("Don't think I should get any of these"); } } } } } // Request Network in_port(requestNetwork_in, CPURequestMsg, reqToL3) { if (requestNetwork_in.isReady(clockEdge())) { peek(requestNetwork_in, CPURequestMsg) { assert(in_msg.Destination.isElement(machineID)); Entry cache_entry := getCacheEntry(in_msg.addr); TBE tbe := TBEs.lookup(in_msg.addr); if (in_msg.Type == CoherenceRequestType:RdBlk) { trigger(Event:RdBlk, in_msg.addr, cache_entry, tbe); } else if (in_msg.Type == CoherenceRequestType:RdBlkS) { trigger(Event:RdBlkS, in_msg.addr, cache_entry, tbe); } else if (in_msg.Type == CoherenceRequestType:RdBlkM) { trigger(Event:RdBlkM, in_msg.addr, cache_entry, tbe); } else if (in_msg.Type == CoherenceRequestType:VicClean) { if (presentOrAvail(in_msg.addr)) { if (in_msg.Shared) { trigger(Event:ClVicBlkShared, in_msg.addr, cache_entry, tbe); } else { trigger(Event:ClVicBlk, in_msg.addr, cache_entry, tbe); } } else { Addr victim := L3cache.cacheProbe(in_msg.addr); trigger(Event:L3_Repl, victim, getCacheEntry(victim), TBEs.lookup(victim)); } } else if (in_msg.Type == CoherenceRequestType:VicDirty) { if (presentOrAvail(in_msg.addr)) { if (in_msg.Shared) { trigger(Event:WrVicBlkShared, in_msg.addr, cache_entry, tbe); } else { trigger(Event:WrVicBlk, in_msg.addr, cache_entry, tbe); } } else { Addr victim := L3cache.cacheProbe(in_msg.addr); trigger(Event:L3_Repl, victim, getCacheEntry(victim), TBEs.lookup(victim)); } } else if (in_msg.Type == CoherenceRequestType:WrCancel) { if (is_valid(tbe) && tbe.From == in_msg.Requestor) { trigger(Event:CancelWB, in_msg.addr, cache_entry, tbe); } else { requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } } } } } // BEGIN ACTIONS action(i_invL3, "i", desc="invalidate L3 cache block") { if (is_valid(cache_entry)) { L3cache.deallocate(address); } unset_cache_entry(); } action(rm_sendResponseM, "rm", desc="send Modified response") { peek(requestNetwork_in, CPURequestMsg) { enqueue(responseNetwork_out, ResponseMsg, l3_response_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:NBSysResp; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; out_msg.Dirty := cache_entry.Dirty; out_msg.State := CoherenceState:Modified; DPRINTF(RubySlicc, "%s\n", out_msg); } } } action(rs_sendResponseS, "rs", desc="send Shared response") { peek(requestNetwork_in, CPURequestMsg) { enqueue(responseNetwork_out, ResponseMsg, l3_response_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:NBSysResp; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := cache_entry.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; out_msg.Dirty := cache_entry.Dirty; out_msg.State := CoherenceState:Shared; DPRINTF(RubySlicc, "%s\n", out_msg); } } } action(r_requestToMem, "r", desc="Miss in L3, pass on") { peek(requestNetwork_in, CPURequestMsg) { enqueue(requestNetwork_out, CPURequestMsg, l3_request_latency) { out_msg.addr := address; out_msg.Type := in_msg.Type; out_msg.Requestor := in_msg.Requestor; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.Shared := false; // unneeded for this request out_msg.MessageSize := in_msg.MessageSize; DPRINTF(RubySlicc, "%s\n", out_msg); } } } action(t_allocateTBE, "t", desc="allocate TBE Entry") { TBEs.allocate(address); set_tbe(TBEs.lookup(address)); if (is_valid(cache_entry)) { tbe.DataBlk := cache_entry.DataBlk; // Data only for WBs tbe.Dirty := cache_entry.Dirty; } tbe.From := machineID; } action(dt_deallocateTBE, "dt", desc="deallocate TBE Entry") { TBEs.deallocate(address); unset_tbe(); } action(vd_vicDirty, "vd", desc="Victimize dirty L3 data") { enqueue(requestNetwork_out, CPURequestMsg, l3_request_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:VicDirty; out_msg.Requestor := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := MessageSizeType:Request_Control; } } action(w_sendResponseWBAck, "w", desc="send WB Ack") { peek(requestNetwork_in, CPURequestMsg) { enqueue(responseNetwork_out, ResponseMsg, l3_response_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:NBSysWBAck; out_msg.Destination.add(in_msg.Requestor); out_msg.Sender := machineID; out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(pi_sendProbeResponseInv, "pi", desc="send probe ack inv, no data") { enqueue(L3Resp_out, ResponseMsg, l3_request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUPrbResp; // L3 and CPUs respond in same way to probes out_msg.Sender := machineID; // will this always be ok? probably not for multisocket out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.Dirty := false; out_msg.Hit := false; out_msg.Ntsl := true; out_msg.State := CoherenceState:NA; out_msg.MessageSize := MessageSizeType:Response_Control; } } action(ph_sendProbeResponseHit, "ph", desc="send probe ack, no data") { enqueue(L3Resp_out, ResponseMsg, l3_request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUPrbResp; // L3 and CPUs respond in same way to probes out_msg.Sender := machineID; // will this always be ok? probably not for multisocket out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.Dirty := false; out_msg.Hit := true; out_msg.Ntsl := false; out_msg.State := CoherenceState:NA; out_msg.MessageSize := MessageSizeType:Response_Control; } } action(pm_sendProbeResponseMiss, "pm", desc="send probe ack, no data") { enqueue(L3Resp_out, ResponseMsg, l3_request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUPrbResp; // L3 and CPUs respond in same way to probes out_msg.Sender := machineID; // will this always be ok? probably not for multisocket out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.Dirty := false; out_msg.Hit := false; out_msg.Ntsl := false; out_msg.State := CoherenceState:NA; out_msg.MessageSize := MessageSizeType:Response_Control; } } action(pd_sendProbeResponseData, "pd", desc="send probe ack, with data") { enqueue(L3Resp_out, ResponseMsg, l3_request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUPrbResp; // L3 and CPUs respond in same way to probes out_msg.Sender := machineID; // will this always be ok? probably not for multisocket out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.DataBlk := cache_entry.DataBlk; assert(cache_entry.Dirty); out_msg.Dirty := true; out_msg.Hit := true; out_msg.State := CoherenceState:NA; out_msg.MessageSize := MessageSizeType:Response_Data; } } action(pdt_sendProbeResponseDataFromTBE, "pdt", desc="send probe ack with data") { enqueue(L3Resp_out, ResponseMsg, l3_request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUPrbResp; out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.DataBlk := tbe.DataBlk; assert(tbe.Dirty); out_msg.Dirty := true; out_msg.Hit := true; out_msg.MessageSize := MessageSizeType:Response_Data; out_msg.State := CoherenceState:NA; DPRINTF(RubySlicc, "%s\n", out_msg); } } action(mc_cancelMemWriteback, "mc", desc="send writeback cancel to memory") { enqueue(requestNetwork_out, CPURequestMsg, l3_request_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:WrCancel; out_msg.Requestor := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := MessageSizeType:Request_Control; } } action(a_allocateBlock, "a", desc="allocate L3 block") { if (is_invalid(cache_entry)) { set_cache_entry(L3cache.allocate(address, new Entry)); } } action(d_writeData, "d", desc="write data to L3") { peek(responseNetwork_in, ResponseMsg) { if (in_msg.Dirty) { cache_entry.Dirty := in_msg.Dirty; } cache_entry.DataBlk := in_msg.DataBlk; DPRINTF(RubySlicc, "Writing to L3: %s\n", in_msg); } } action(rd_copyDataFromRequest, "rd", desc="write data to L3") { peek(requestNetwork_in, CPURequestMsg) { cache_entry.DataBlk := in_msg.DataBlk; cache_entry.Dirty := true; } } action(f_setFrom, "f", desc="set who WB is expected to come from") { peek(requestNetwork_in, CPURequestMsg) { tbe.From := in_msg.Requestor; } } action(rf_resetFrom, "rf", desc="reset From") { tbe.From := machineID; } action(wb_data, "wb", desc="write back data") { enqueue(L3Resp_out, ResponseMsg, l3_request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:CPUData; out_msg.Sender := machineID; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.DataBlk := tbe.DataBlk; out_msg.Dirty := tbe.Dirty; if (tbe.Shared) { out_msg.NbReqShared := true; } else { out_msg.NbReqShared := false; } out_msg.State := CoherenceState:Shared; // faux info out_msg.MessageSize := MessageSizeType:Writeback_Data; DPRINTF(RubySlicc, "%s\n", out_msg); } } action(wt_writeDataToTBE, "wt", desc="write WB data to TBE") { peek(responseNetwork_in, ResponseMsg) { tbe.DataBlk := in_msg.DataBlk; tbe.Dirty := in_msg.Dirty; } } action(uu_sendUnblock, "uu", desc="state changed, unblock") { enqueue(unblockNetwork_out, UnblockMsg, l3_request_latency) { out_msg.addr := address; out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory)); out_msg.MessageSize := MessageSizeType:Unblock_Control; DPRINTF(RubySlicc, "%s\n", out_msg); } } action(ut_updateTag, "ut", desc="update Tag (i.e. set MRU)") { L3cache.setMRU(address); } action(p_popRequestQueue, "p", desc="pop request queue") { requestNetwork_in.dequeue(clockEdge()); } action(pr_popResponseQueue, "pr", desc="pop response queue") { responseNetwork_in.dequeue(clockEdge()); } action(pn_popNBResponseQueue, "pn", desc="pop NB response queue") { NBResponse_in.dequeue(clockEdge()); } action(pp_popProbeQueue, "pp", desc="pop probe queue") { probeNetwork_in.dequeue(clockEdge()); } action(zz_recycleRequestQueue, "\z", desc="recycle request queue") { requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } // END ACTIONS // BEGIN TRANSITIONS // transitions from base transition({I, I_C}, {RdBlk, RdBlkS, RdBlkM, CtoD}) {TagArrayRead} { r_requestToMem; p_popRequestQueue; } transition(O, RdBlk ) {TagArrayRead, DataArrayRead} { rs_sendResponseS; ut_updateTag; p_popRequestQueue; } transition(M, RdBlk, O) {TagArrayRead, DataArrayRead, TagArrayWrite} { rs_sendResponseS; ut_updateTag; p_popRequestQueue; } transition(S, RdBlk) {TagArrayRead, DataArrayRead} { rs_sendResponseS; ut_updateTag; p_popRequestQueue; } transition(E, RdBlk, S) {TagArrayRead, DataArrayRead, TagArrayWrite} { rs_sendResponseS; ut_updateTag; p_popRequestQueue; } transition({M, O}, RdBlkS, O) {TagArrayRead, DataArrayRead, TagArrayWrite} { rs_sendResponseS; ut_updateTag; p_popRequestQueue; } transition({E, S}, RdBlkS, S) {TagArrayRead, DataArrayRead, TagArrayWrite} { rs_sendResponseS; ut_updateTag; p_popRequestQueue; } transition(M, RdBlkM, I) {TagArrayRead, TagArrayWrite, DataArrayRead} { rm_sendResponseM; i_invL3; p_popRequestQueue; } transition({O, S}, {RdBlkM, CtoD}) {TagArrayRead} { r_requestToMem; // can't handle this, just forward p_popRequestQueue; } transition(E, RdBlkM, I) {TagArrayRead, TagArrayWrite, DataArrayRead} { rm_sendResponseM; i_invL3; p_popRequestQueue; } transition({I}, WrVicBlk, I_M) {TagArrayRead, TagArrayWrite} { a_allocateBlock; t_allocateTBE; f_setFrom; // rd_copyDataFromRequest; w_sendResponseWBAck; p_popRequestQueue; } transition(I_C, {WrVicBlk, WrVicBlkShared, ClVicBlk, ClVicBlkShared}) {} { zz_recycleRequestQueue; } transition({I}, WrVicBlkShared, I_O) {TagArrayRead, TagArrayWrite} { a_allocateBlock; t_allocateTBE; f_setFrom; // rd_copyDataFromRequest; w_sendResponseWBAck; p_popRequestQueue; } transition(S, WrVicBlkShared, S_O) {TagArrayRead, TagArrayWrite} { // rd_copyDataFromRequest; t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(S, WrVicBlk, S_M) {TagArrayRead, TagArrayWrite} { // should be technically not possible, but assume the data comes back with shared bit flipped // rd_copyDataFromRequest; t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(E, WrVicBlk, E_M) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(E, WrVicBlkShared, E_O) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(O, WrVicBlk, O_M) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(O, WrVicBlkShared, O_O) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(M, WrVicBlk, M_M) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(M, WrVicBlkShared, M_O) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition({I}, ClVicBlk, I_E) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; a_allocateBlock; w_sendResponseWBAck; p_popRequestQueue; } transition({I}, ClVicBlkShared, I_S) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; a_allocateBlock; w_sendResponseWBAck; p_popRequestQueue; } transition(S, ClVicBlk, S_E) {TagArrayRead, TagArrayWrite} { // technically impossible, assume data comes back with shared bit flipped t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(S, ClVicBlkShared, S_S) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(E, ClVicBlk, E_E) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(E, ClVicBlkShared, E_S) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(O, ClVicBlk, O_E) {TagArrayRead, TagArrayWrite} { // technically impossible, but assume data comes back with shared bit flipped t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(O, ClVicBlkShared, O_S) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(M, ClVicBlk, M_E) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(M, ClVicBlkShared, M_S) {TagArrayRead, TagArrayWrite} { t_allocateTBE; f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition({MO_I}, {RdBlk, RdBlkS, RdBlkM, CtoD}) {} { r_requestToMem; p_popRequestQueue; } transition(MO_I, {WrVicBlkShared, WrVicBlk, ClVicBlk, ClVicBlkShared}, MOD_I) {TagArrayWrite} { f_setFrom; w_sendResponseWBAck; p_popRequestQueue; } transition(I_M, CPUData, M) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; pr_popResponseQueue; } transition(I_M, CPUDataShared, O) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; pr_popResponseQueue; } transition(I_O, {CPUData, CPUDataShared}, O) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; pr_popResponseQueue; } transition(I_E, CPUData, E) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; pr_popResponseQueue; } transition(I_E, CPUDataShared, S) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; pr_popResponseQueue; } transition(I_S, {CPUData, CPUDataShared}, S) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; pr_popResponseQueue; } transition(S_M, CPUDataShared, O) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; ut_updateTag; // update tag on writeback hits. pr_popResponseQueue; } transition(S_O, {CPUData, CPUDataShared}, O) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; ut_updateTag; // update tag on writeback hits. pr_popResponseQueue; } transition(S_E, CPUDataShared, S) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; ut_updateTag; // update tag on writeback hits. pr_popResponseQueue; } transition(S_S, {CPUData, CPUDataShared}, S) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; ut_updateTag; // update tag on writeback hits. pr_popResponseQueue; } transition(O_E, CPUDataShared, O) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; ut_updateTag; // update tag on writeback hits. pr_popResponseQueue; } transition(O_S, {CPUData, CPUDataShared}, O) {DataArrayWrite, TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; d_writeData; ut_updateTag; // update tag on writeback hits. pr_popResponseQueue; } transition({D_I}, {CPUData, CPUDataShared}, I) {TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; pr_popResponseQueue; } transition(MOD_I, {CPUData, CPUDataShared}, MO_I) {TagArrayWrite} { uu_sendUnblock; rf_resetFrom; pr_popResponseQueue; } transition(I_I, {CPUData, CPUDataShared}, MO_I) {TagArrayWrite, DataArrayRead} { uu_sendUnblock; wt_writeDataToTBE; rf_resetFrom; pr_popResponseQueue; } transition(I_CD, {CPUData, CPUDataShared}, I) {DataArrayRead, TagArrayWrite} { uu_sendUnblock; wt_writeDataToTBE; wb_data; dt_deallocateTBE; pr_popResponseQueue; } transition({M, O}, L3_Repl, MO_I) {TagArrayRead, TagArrayWrite} { t_allocateTBE; vd_vicDirty; i_invL3; } transition({E, S,}, L3_Repl, I) {TagArrayRead, TagArrayWrite} { i_invL3; } transition({I_M, I_O, S_M, S_O, E_M, E_O}, L3_Repl) {} { zz_recycleRequestQueue; } transition({O_M, O_O, O_E, O_S, M_M, M_O, M_E, M_S}, L3_Repl) {} { zz_recycleRequestQueue; } transition({I_E, I_S, S_E, S_S, E_E, E_S}, L3_Repl) {} { zz_recycleRequestQueue; } transition({M, O}, PrbInvData, I) {TagArrayRead, TagArrayWrite, DataArrayRead} { pd_sendProbeResponseData; i_invL3; pp_popProbeQueue; } transition({E, S, I}, PrbInvData, I) {TagArrayRead, TagArrayWrite} { pi_sendProbeResponseInv; i_invL3; // nothing will happen in I pp_popProbeQueue; } transition({M, O, E, S, I}, PrbInv, I) {TagArrayRead, TagArrayWrite} { pi_sendProbeResponseInv; i_invL3; // nothing will happen in I pp_popProbeQueue; } transition({M, O}, PrbShrData, O) {TagArrayRead, DataArrayRead, TagArrayWrite} { pd_sendProbeResponseData; pp_popProbeQueue; } transition({E, S}, PrbShrData, S) {TagArrayRead, TagArrayWrite} { ph_sendProbeResponseHit; pp_popProbeQueue; } transition(I, PrbShrData) {TagArrayRead} { pm_sendProbeResponseMiss; pp_popProbeQueue; } transition(MO_I, PrbInvData, I_C) {TagArrayWrite, DataArrayRead} { pdt_sendProbeResponseDataFromTBE; mc_cancelMemWriteback; pp_popProbeQueue; } transition(MO_I, PrbInv, I_C) {TagArrayWrite} { pi_sendProbeResponseInv; mc_cancelMemWriteback; pp_popProbeQueue; } transition(MO_I, PrbShrData) {DataArrayRead} { pdt_sendProbeResponseDataFromTBE; pp_popProbeQueue; } transition(I_C, {PrbInvData, PrbInv}) {} { pi_sendProbeResponseInv; pp_popProbeQueue; } transition(I_C, PrbShrData) {} { pm_sendProbeResponseMiss; pp_popProbeQueue; } transition(I_I, {WBAck}, I_CD) {TagArrayWrite} { pn_popNBResponseQueue; } transition(MOD_I, WBAck, D_I) {DataArrayRead} { wb_data; pn_popNBResponseQueue; } transition(MO_I, WBAck, I) {DataArrayRead, TagArrayWrite} { wb_data; dt_deallocateTBE; pn_popNBResponseQueue; } transition(I_C, {WBAck}, I) {TagArrayWrite} { dt_deallocateTBE; pn_popNBResponseQueue; } transition({I_M, I_O, I_E, I_S}, CancelWB, I) {TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; i_invL3; p_popRequestQueue; } transition({S_S, S_O, S_M, S_E}, CancelWB, S) {TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; p_popRequestQueue; } transition({E_M, E_O, E_E, E_S}, CancelWB, E) {TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; p_popRequestQueue; } transition({O_M, O_O, O_E, O_S}, CancelWB, O) {TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; p_popRequestQueue; } transition({M_M, M_O, M_E, M_S}, CancelWB, M) {TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; p_popRequestQueue; } transition(D_I, CancelWB, I) {TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; p_popRequestQueue; } transition(MOD_I, CancelWB, MO_I) {TagArrayWrite} { uu_sendUnblock; rf_resetFrom; p_popRequestQueue; } transition(I_I, CancelWB, I_C) {TagArrayWrite} { uu_sendUnblock; rf_resetFrom; mc_cancelMemWriteback; p_popRequestQueue; } transition(I_CD, CancelWB, I) {TagArrayWrite} { uu_sendUnblock; dt_deallocateTBE; mc_cancelMemWriteback; p_popRequestQueue; } }