/* * Copyright (c) 1999-2013 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ machine(MachineType:L1Cache, "Directory protocol") : Sequencer * sequencer; CacheMemory * L1Icache; CacheMemory * L1Dcache; int l2_select_num_bits; Cycles request_latency := 2; Cycles use_timeout_latency := 50; bool send_evictions; // Message Queues // From this node's L1 cache TO the network // a local L1 -> this L2 bank, currently ordered with directory forwarded requests MessageBuffer * requestFromL1Cache, network="To", virtual_network="0", vnet_type="request"; // a local L1 -> this L2 bank MessageBuffer * responseFromL1Cache, network="To", virtual_network="2", vnet_type="response"; // To this node's L1 cache FROM the network // a L2 bank -> this L1 MessageBuffer * requestToL1Cache, network="From", virtual_network="0", vnet_type="request"; // a L2 bank -> this L1 MessageBuffer * responseToL1Cache, network="From", virtual_network="2", vnet_type="response"; MessageBuffer * triggerQueue; MessageBuffer * mandatoryQueue; { // STATES state_declaration(State, desc="Cache states", default="L1Cache_State_I") { // Base states I, AccessPermission:Invalid, desc="Idle"; S, AccessPermission:Read_Only, desc="Shared"; O, AccessPermission:Read_Only, desc="Owned"; M, AccessPermission:Read_Only, desc="Modified (dirty)"; M_W, AccessPermission:Read_Only, desc="Modified (dirty)"; MM, AccessPermission:Read_Write, desc="Modified (dirty and locally modified)"; MM_W, AccessPermission:Read_Write, desc="Modified (dirty and locally modified)"; // Transient States IM, AccessPermission:Busy, "IM", desc="Issued GetX"; SM, AccessPermission:Read_Only, "SM", desc="Issued GetX, we still have an old copy of the line"; OM, AccessPermission:Read_Only, "SM", desc="Issued GetX, received data"; IS, AccessPermission:Busy, "IS", desc="Issued GetS"; SI, AccessPermission:Busy, "OI", desc="Issued PutS, waiting for ack"; OI, AccessPermission:Busy, "OI", desc="Issued PutO, waiting for ack"; MI, AccessPermission:Busy, "MI", desc="Issued PutX, waiting for ack"; II, AccessPermission:Busy, "II", desc="Issued PutX/O, saw Fwd_GETS or Fwd_GETX, waiting for ack"; } // EVENTS enumeration(Event, desc="Cache events") { Load, desc="Load request from the processor"; Ifetch, desc="I-fetch request from the processor"; Store, desc="Store request from the processor"; L1_Replacement, desc="Replacement"; // Requests Own_GETX, desc="We observe our own GetX forwarded back to us"; Fwd_GETX, desc="A GetX from another processor"; Fwd_GETS, desc="A GetS from another processor"; Fwd_DMA, desc="A GetS from another processor"; Inv, desc="Invalidations from the directory"; // Responses Ack, desc="Received an ack message"; Data, desc="Received a data message, responder has a shared copy"; Exclusive_Data, desc="Received a data message"; Writeback_Ack, desc="Writeback O.K. from directory"; Writeback_Ack_Data, desc="Writeback O.K. from directory"; Writeback_Nack, desc="Writeback not O.K. from directory"; // Triggers All_acks, desc="Received all required data and message acks"; // Timeouts Use_Timeout, desc="lockout period ended"; } // TYPES // CacheEntry structure(Entry, desc="...", interface="AbstractCacheEntry") { State CacheState, desc="cache state"; bool Dirty, desc="Is the data dirty (different than memory)?"; DataBlock DataBlk, desc="data for the block"; } // TBE fields structure(TBE, desc="...") { Addr addr, desc="Physical address for this TBE"; State TBEState, desc="Transient state"; DataBlock DataBlk, desc="data for the block, required for concurrent writebacks"; bool Dirty, desc="Is the data dirty (different than memory)?"; int NumPendingMsgs, default="0", desc="Number of acks/data messages that this processor is waiting for"; } structure(TBETable, external ="yes") { TBE lookup(Addr); void allocate(Addr); void deallocate(Addr); bool isPresent(Addr); } Tick clockEdge(); Tick cyclesToTicks(Cycles c); void set_cache_entry(AbstractCacheEntry b); void unset_cache_entry(); void set_tbe(TBE b); void unset_tbe(); TBETable TBEs, template="", constructor="m_number_of_TBEs"; TimerTable useTimerTable; int l2_select_low_bit, default="RubySystem::getBlockSizeBits()"; Entry getCacheEntry(Addr addr), return_by_pointer="yes" { Entry L1Dcache_entry := static_cast(Entry, "pointer", L1Dcache.lookup(addr)); if(is_valid(L1Dcache_entry)) { return L1Dcache_entry; } Entry L1Icache_entry := static_cast(Entry, "pointer", L1Icache.lookup(addr)); return L1Icache_entry; } Entry getL1DCacheEntry(Addr addr), return_by_pointer="yes" { return static_cast(Entry, "pointer", L1Dcache.lookup(addr)); } Entry getL1ICacheEntry(Addr addr), return_by_pointer="yes" { return static_cast(Entry, "pointer", L1Icache.lookup(addr)); } State getState(TBE tbe, Entry cache_entry, Addr addr) { if(is_valid(tbe)) { return tbe.TBEState; } else if (is_valid(cache_entry)) { return cache_entry.CacheState; } return State:I; } void setState(TBE tbe, Entry cache_entry, Addr addr, State state) { assert((L1Dcache.isTagPresent(addr) && L1Icache.isTagPresent(addr)) == false); if (is_valid(tbe)) { tbe.TBEState := state; } if (is_valid(cache_entry)) { if ( ((cache_entry.CacheState != State:M) && (state == State:M)) || ((cache_entry.CacheState != State:MM) && (state == State:MM)) || ((cache_entry.CacheState != State:S) && (state == State:S)) || ((cache_entry.CacheState != State:O) && (state == State:O)) ) { cache_entry.CacheState := state; sequencer.checkCoherence(addr); } else { cache_entry.CacheState := state; } } } AccessPermission getAccessPermission(Addr addr) { TBE tbe := TBEs[addr]; if(is_valid(tbe)) { DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(tbe.TBEState)); return L1Cache_State_to_permission(tbe.TBEState); } Entry cache_entry := getCacheEntry(addr); if(is_valid(cache_entry)) { DPRINTF(RubySlicc, "%s\n", L1Cache_State_to_permission(cache_entry.CacheState)); return L1Cache_State_to_permission(cache_entry.CacheState); } DPRINTF(RubySlicc, "AccessPermission_NotPresent\n"); return AccessPermission:NotPresent; } void setAccessPermission(Entry cache_entry, Addr addr, State state) { if (is_valid(cache_entry)) { cache_entry.changePermission(L1Cache_State_to_permission(state)); } } void functionalRead(Addr addr, Packet *pkt) { Entry cache_entry := getCacheEntry(addr); if(is_valid(cache_entry)) { testAndRead(addr, cache_entry.DataBlk, pkt); } else { TBE tbe := TBEs[addr]; if(is_valid(tbe)) { testAndRead(addr, tbe.DataBlk, pkt); } else { error("Data block missing!"); } } } int functionalWrite(Addr addr, Packet *pkt) { int num_functional_writes := 0; Entry cache_entry := getCacheEntry(addr); if(is_valid(cache_entry)) { num_functional_writes := num_functional_writes + testAndWrite(addr, cache_entry.DataBlk, pkt); return num_functional_writes; } TBE tbe := TBEs[addr]; num_functional_writes := num_functional_writes + testAndWrite(addr, tbe.DataBlk, pkt); return num_functional_writes; } Event mandatory_request_type_to_event(RubyRequestType type) { if (type == RubyRequestType:LD) { return Event:Load; } else if (type == RubyRequestType:IFETCH) { return Event:Ifetch; } else if ((type == RubyRequestType:ST) || (type == RubyRequestType:ATOMIC)) { return Event:Store; } else { error("Invalid RubyRequestType"); } } // ** OUT_PORTS ** out_port(requestNetwork_out, RequestMsg, requestFromL1Cache); out_port(responseNetwork_out, ResponseMsg, responseFromL1Cache); out_port(triggerQueue_out, TriggerMsg, triggerQueue); // ** IN_PORTS ** // Use Timer in_port(useTimerTable_in, Addr, useTimerTable) { if (useTimerTable_in.isReady(clockEdge())) { Addr readyAddress := useTimerTable.nextAddress(); trigger(Event:Use_Timeout, readyAddress, getCacheEntry(readyAddress), TBEs.lookup(readyAddress)); } } // Trigger Queue in_port(triggerQueue_in, TriggerMsg, triggerQueue) { if (triggerQueue_in.isReady(clockEdge())) { peek(triggerQueue_in, TriggerMsg) { if (in_msg.Type == TriggerType:ALL_ACKS) { trigger(Event:All_acks, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else { error("Unexpected message"); } } } } // Nothing from the request network // Request Network in_port(requestNetwork_in, RequestMsg, requestToL1Cache) { if (requestNetwork_in.isReady(clockEdge())) { peek(requestNetwork_in, RequestMsg, block_on="addr") { assert(in_msg.Destination.isElement(machineID)); DPRINTF(RubySlicc, "L1 received: %s\n", in_msg.Type); if (in_msg.Type == CoherenceRequestType:GETX || in_msg.Type == CoherenceRequestType:DMA_WRITE) { if (in_msg.Requestor == machineID && in_msg.RequestorMachine == MachineType:L1Cache) { trigger(Event:Own_GETX, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else { trigger(Event:Fwd_GETX, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } } else if (in_msg.Type == CoherenceRequestType:GETS) { trigger(Event:Fwd_GETS, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else if (in_msg.Type == CoherenceRequestType:DMA_READ) { trigger(Event:Fwd_DMA, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else if (in_msg.Type == CoherenceRequestType:WB_ACK) { trigger(Event:Writeback_Ack, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else if (in_msg.Type == CoherenceRequestType:WB_ACK_DATA) { trigger(Event:Writeback_Ack_Data, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else if (in_msg.Type == CoherenceRequestType:WB_NACK) { trigger(Event:Writeback_Nack, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else if (in_msg.Type == CoherenceRequestType:INV) { trigger(Event:Inv, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else { error("Unexpected message"); } } } } // Response Network in_port(responseToL1Cache_in, ResponseMsg, responseToL1Cache) { if (responseToL1Cache_in.isReady(clockEdge())) { peek(responseToL1Cache_in, ResponseMsg, block_on="addr") { if (in_msg.Type == CoherenceResponseType:ACK) { trigger(Event:Ack, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else if (in_msg.Type == CoherenceResponseType:DATA) { trigger(Event:Data, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) { trigger(Event:Exclusive_Data, in_msg.addr, getCacheEntry(in_msg.addr), TBEs[in_msg.addr]); } else { error("Unexpected message"); } } } } // Nothing from the unblock network // Mandatory Queue betweens Node's CPU and it's L1 caches in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...") { if (mandatoryQueue_in.isReady(clockEdge())) { peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") { // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache if (in_msg.Type == RubyRequestType:IFETCH) { // ** INSTRUCTION ACCESS *** Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress); if (is_valid(L1Icache_entry)) { // The tag matches for the L1, so the L1 asks the L2 for it. trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, L1Icache_entry, TBEs[in_msg.LineAddress]); } else { Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress); // Check to see if it is in the OTHER L1 if (is_valid(L1Dcache_entry)) { // The block is in the wrong L1, put the request on the queue to the shared L2 trigger(Event:L1_Replacement, in_msg.LineAddress, L1Dcache_entry, TBEs[in_msg.LineAddress]); } if (L1Icache.cacheAvail(in_msg.LineAddress)) { // L1 does't have the line, but we have space for it in the L1 so let's see if the L2 has it trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, L1Icache_entry, TBEs[in_msg.LineAddress]); } else { // No room in the L1, so we need to make room in the L1 trigger(Event:L1_Replacement, L1Icache.cacheProbe(in_msg.LineAddress), getL1ICacheEntry(L1Icache.cacheProbe(in_msg.LineAddress)), TBEs[L1Icache.cacheProbe(in_msg.LineAddress)]); } } } else { // *** DATA ACCESS *** Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress); if (is_valid(L1Dcache_entry)) { // The tag matches for the L1, so the L1 ask the L2 for it trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, L1Dcache_entry, TBEs[in_msg.LineAddress]); } else { Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress); // Check to see if it is in the OTHER L1 if (is_valid(L1Icache_entry)) { // The block is in the wrong L1, put the request on the queue to the shared L2 trigger(Event:L1_Replacement, in_msg.LineAddress, L1Icache_entry, TBEs[in_msg.LineAddress]); } if (L1Dcache.cacheAvail(in_msg.LineAddress)) { // L1 does't have the line, but we have space for it in the L1 let's see if the L2 has it trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress, L1Dcache_entry, TBEs[in_msg.LineAddress]); } else { // No room in the L1, so we need to make room in the L1 trigger(Event:L1_Replacement, L1Dcache.cacheProbe(in_msg.LineAddress), getL1DCacheEntry(L1Dcache.cacheProbe(in_msg.LineAddress)), TBEs[L1Dcache.cacheProbe(in_msg.LineAddress)]); } } } } } } // ACTIONS action(a_issueGETS, "a", desc="Issue GETS") { peek(mandatoryQueue_in, RubyRequest) { enqueue(requestNetwork_out, RequestMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:GETS; out_msg.Requestor := machineID; out_msg.RequestorMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.MessageSize := MessageSizeType:Request_Control; out_msg.AccessMode := in_msg.AccessMode; out_msg.Prefetch := in_msg.Prefetch; } } } action(b_issueGETX, "b", desc="Issue GETX") { peek(mandatoryQueue_in, RubyRequest) { enqueue(requestNetwork_out, RequestMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:GETX; out_msg.Requestor := machineID; out_msg.RequestorMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.MessageSize := MessageSizeType:Request_Control; out_msg.AccessMode := in_msg.AccessMode; out_msg.Prefetch := in_msg.Prefetch; } } } action(d_issuePUTX, "d", desc="Issue PUTX") { enqueue(requestNetwork_out, RequestMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:PUTX; out_msg.Requestor := machineID; out_msg.RequestorMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } action(dd_issuePUTO, "\d", desc="Issue PUTO") { enqueue(requestNetwork_out, RequestMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:PUTO; out_msg.Requestor := machineID; out_msg.RequestorMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } action(dd_issuePUTS, "\ds", desc="Issue PUTS") { enqueue(requestNetwork_out, RequestMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:PUTS; out_msg.Requestor := machineID; out_msg.RequestorMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } action(e_sendData, "e", desc="Send data from cache to requestor") { peek(requestNetwork_in, RequestMsg) { assert(is_valid(cache_entry)); if (in_msg.RequestorMachine == MachineType:L2Cache) { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.DataBlk := cache_entry.DataBlk; // out_msg.Dirty := cache_entry.Dirty; out_msg.Dirty := false; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:Response_Data; } DPRINTF(RubySlicc, "Sending data to L2: %#x\n", in_msg.addr); } else { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := cache_entry.DataBlk; // out_msg.Dirty := cache_entry.Dirty; out_msg.Dirty := false; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:ResponseLocal_Data; } DPRINTF(RubySlicc, "Sending data to L1\n"); } } } action(e_sendDataToL2, "ee", desc="Send data from cache to requestor") { enqueue(responseNetwork_out, ResponseMsg, request_latency) { assert(is_valid(cache_entry)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.DataBlk := cache_entry.DataBlk; out_msg.Dirty := cache_entry.Dirty; out_msg.Acks := 0; // irrelevant out_msg.MessageSize := MessageSizeType:Response_Data; } } action(ee_sendDataExclusive, "\e", desc="Send data from cache to requestor, don't keep a shared copy") { peek(requestNetwork_in, RequestMsg) { assert(is_valid(cache_entry)); if (in_msg.RequestorMachine == MachineType:L2Cache) { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.DataBlk := cache_entry.DataBlk; out_msg.Dirty := cache_entry.Dirty; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:Response_Data; } DPRINTF(RubySlicc, "Sending exclusive data to L2\n"); } else { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := cache_entry.DataBlk; out_msg.Dirty := cache_entry.Dirty; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:ResponseLocal_Data; } DPRINTF(RubySlicc, "Sending exclusive data to L1\n"); } } } action(f_sendAck, "f", desc="Send ack from cache to requestor") { peek(requestNetwork_in, RequestMsg) { if (in_msg.RequestorMachine == MachineType:L1Cache) { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:ACK; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(in_msg.Requestor); out_msg.Acks := 0 - 1; // -1 out_msg.MessageSize := MessageSizeType:Response_Control; } } else { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:ACK; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.Acks := 0 - 1; // -1 out_msg.MessageSize := MessageSizeType:Response_Control; } } } } action(g_sendUnblock, "g", desc="Send unblock to memory") { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:UNBLOCK; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.MessageSize := MessageSizeType:Unblock_Control; } } action(gg_sendUnblockExclusive, "\g", desc="Send unblock exclusive to memory") { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:UNBLOCK_EXCLUSIVE; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.MessageSize := MessageSizeType:Unblock_Control; } } action(h_load_hit, "hd", desc="Notify sequencer the load completed.") { assert(is_valid(cache_entry)); DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); L1Dcache.setMRU(cache_entry); sequencer.readCallback(address, cache_entry.DataBlk); } action(h_ifetch_hit, "hi", desc="Notify the sequencer about ifetch completion.") { assert(is_valid(cache_entry)); DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); L1Icache.setMRU(cache_entry); sequencer.readCallback(address, cache_entry.DataBlk); } action(hx_load_hit, "hx", desc="Notify sequencer the load completed.") { assert(is_valid(cache_entry)); DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); L1Icache.setMRU(address); L1Dcache.setMRU(address); sequencer.readCallback(address, cache_entry.DataBlk, true); } action(hh_store_hit, "\h", desc="Notify sequencer that store completed.") { assert(is_valid(cache_entry)); DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); L1Dcache.setMRU(cache_entry); sequencer.writeCallback(address, cache_entry.DataBlk); cache_entry.Dirty := true; } action(xx_store_hit, "\xx", desc="Notify sequencer that store completed.") { assert(is_valid(cache_entry)); DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk); L1Icache.setMRU(address); L1Dcache.setMRU(address); sequencer.writeCallback(address, cache_entry.DataBlk, true); cache_entry.Dirty := true; } action(i_allocateTBE, "i", desc="Allocate TBE") { check_allocate(TBEs); TBEs.allocate(address); set_tbe(TBEs[address]); assert(is_valid(cache_entry)); tbe.DataBlk := cache_entry.DataBlk; // Data only used for writebacks tbe.Dirty := cache_entry.Dirty; } action(j_popTriggerQueue, "j", desc="Pop trigger queue.") { triggerQueue_in.dequeue(clockEdge()); } action(jj_unsetUseTimer, "\jj", desc="Unset use timer.") { useTimerTable.unset(address); } action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") { mandatoryQueue_in.dequeue(clockEdge()); } action(l_popForwardQueue, "l", desc="Pop forwareded request queue.") { requestNetwork_in.dequeue(clockEdge()); } action(m_decrementNumberOfMessages, "m", desc="Decrement the number of messages for which we're waiting") { peek(responseToL1Cache_in, ResponseMsg) { assert(is_valid(tbe)); DPRINTF(RubySlicc, "L1 decrementNumberOfMessages: %d\n", in_msg.Acks); tbe.NumPendingMsgs := tbe.NumPendingMsgs - in_msg.Acks; } } action(mm_decrementNumberOfMessages, "\m", desc="Decrement the number of messages for which we're waiting") { peek(requestNetwork_in, RequestMsg) { assert(is_valid(tbe)); tbe.NumPendingMsgs := tbe.NumPendingMsgs - in_msg.Acks; } } action(n_popResponseQueue, "n", desc="Pop response queue") { responseToL1Cache_in.dequeue(clockEdge()); } action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") { assert(is_valid(tbe)); if (tbe.NumPendingMsgs == 0) { enqueue(triggerQueue_out, TriggerMsg) { out_msg.addr := address; out_msg.Type := TriggerType:ALL_ACKS; } } } action(o_scheduleUseTimeout, "oo", desc="Schedule a use timeout.") { useTimerTable.set(address, clockEdge() + cyclesToTicks(use_timeout_latency)); } action(ub_dmaUnblockL2Cache, "ub", desc="Send dma ack to l2 cache") { peek(requestNetwork_in, RequestMsg) { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DMA_ACK; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.Dirty := false; out_msg.Acks := 1; out_msg.MessageSize := MessageSizeType:Response_Control; } } } action(q_sendDataFromTBEToCache, "q", desc="Send data from TBE to cache") { peek(requestNetwork_in, RequestMsg) { assert(is_valid(tbe)); if (in_msg.RequestorMachine == MachineType:L1Cache || in_msg.RequestorMachine == MachineType:DMA) { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := tbe.DataBlk; // out_msg.Dirty := tbe.Dirty; out_msg.Dirty := false; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:ResponseLocal_Data; } } else { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.DataBlk := tbe.DataBlk; // out_msg.Dirty := tbe.Dirty; out_msg.Dirty := false; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:Response_Data; } } } } action(q_sendExclusiveDataFromTBEToCache, "qq", desc="Send data from TBE to cache") { peek(requestNetwork_in, RequestMsg) { assert(is_valid(tbe)); if (in_msg.RequestorMachine == MachineType:L1Cache) { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := tbe.DataBlk; out_msg.Dirty := tbe.Dirty; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:ResponseLocal_Data; } } else { enqueue(responseNetwork_out, ResponseMsg, request_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.DataBlk := tbe.DataBlk; out_msg.Dirty := tbe.Dirty; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:Response_Data; } } } } // L2 will usually request data for a writeback action(qq_sendWBDataFromTBEToL2, "\q", desc="Send data from TBE to L2") { enqueue(responseNetwork_out, ResponseMsg, request_latency) { assert(is_valid(tbe)); out_msg.addr := address; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:L1Cache; out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits, intToID(0))); out_msg.Dirty := tbe.Dirty; if (tbe.Dirty) { out_msg.Type := CoherenceResponseType:WRITEBACK_DIRTY_DATA; } else { out_msg.Type := CoherenceResponseType:WRITEBACK_CLEAN_DATA; } out_msg.DataBlk := tbe.DataBlk; out_msg.MessageSize := MessageSizeType:Writeback_Data; } } action(s_deallocateTBE, "s", desc="Deallocate TBE") { TBEs.deallocate(address); unset_tbe(); } action(u_writeDataToCache, "u", desc="Write data to cache") { peek(responseToL1Cache_in, ResponseMsg) { assert(is_valid(cache_entry)); cache_entry.DataBlk := in_msg.DataBlk; cache_entry.Dirty := in_msg.Dirty; if (in_msg.Type == CoherenceResponseType:DATA) { //assert(in_msg.Dirty == false); } } } action(v_writeDataToCacheVerify, "v", desc="Write data to cache, assert it was same as before") { peek(responseToL1Cache_in, ResponseMsg) { assert(is_valid(cache_entry)); assert(cache_entry.DataBlk == in_msg.DataBlk); cache_entry.DataBlk := in_msg.DataBlk; cache_entry.Dirty := in_msg.Dirty; } } action(kk_deallocateL1CacheBlock, "\k", desc="Deallocate cache block. Sets the cache to invalid, allowing a replacement in parallel with a fetch.") { if (L1Dcache.isTagPresent(address)) { L1Dcache.deallocate(address); } else { L1Icache.deallocate(address); } unset_cache_entry(); } action(ii_allocateL1DCacheBlock, "\i", desc="Set L1 D-cache tag equal to tag of block B.") { if ((is_invalid(cache_entry))) { set_cache_entry(L1Dcache.allocate(address, new Entry)); } } action(jj_allocateL1ICacheBlock, "\j", desc="Set L1 I-cache tag equal to tag of block B.") { if ((is_invalid(cache_entry))) { set_cache_entry(L1Icache.allocate(address, new Entry)); } } action(forward_eviction_to_cpu, "\cc", desc="sends eviction information to the processor") { if (send_evictions) { DPRINTF(RubySlicc, "Sending invalidation for %#x to the CPU\n", address); sequencer.evictionCallback(address); } } action(uu_profileInstMiss, "\uim", desc="Profile the demand miss") { ++L1Icache.demand_misses; } action(uu_profileInstHit, "\uih", desc="Profile the demand hit") { ++L1Icache.demand_hits; } action(uu_profileDataMiss, "\udm", desc="Profile the demand miss") { ++L1Dcache.demand_misses; } action(uu_profileDataHit, "\udh", desc="Profile the demand hit") { ++L1Dcache.demand_hits; } action(z_recycleRequestQueue, "z", desc="Send the head of the mandatory queue to the back of the queue.") { requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(zz_recycleMandatoryQueue, "\z", desc="Send the head of the mandatory queue to the back of the queue.") { mandatoryQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } //***************************************************** // TRANSITIONS //***************************************************** // Transitions for Load/Store/L2_Replacement from transient states transition({IM, SM, OM, IS, OI, SI, MI, II}, {Store, L1_Replacement}) { zz_recycleMandatoryQueue; } transition({M_W, MM_W}, L1_Replacement) { zz_recycleMandatoryQueue; } transition({M_W, MM_W}, {Fwd_GETS, Fwd_DMA, Fwd_GETX, Own_GETX, Inv}) { z_recycleRequestQueue; } transition({IM, IS, OI, MI, SI, II}, {Load, Ifetch}) { zz_recycleMandatoryQueue; } // Transitions from Idle transition(I, Load, IS) { ii_allocateL1DCacheBlock; i_allocateTBE; a_issueGETS; uu_profileDataMiss; k_popMandatoryQueue; } transition(I, Ifetch, IS) { jj_allocateL1ICacheBlock; i_allocateTBE; a_issueGETS; uu_profileInstMiss; k_popMandatoryQueue; } transition(I, Store, IM) { ii_allocateL1DCacheBlock; i_allocateTBE; b_issueGETX; uu_profileDataMiss; k_popMandatoryQueue; } transition(I, L1_Replacement) { kk_deallocateL1CacheBlock; } transition(I, Inv) { f_sendAck; l_popForwardQueue; } transition({S, SM, O, OM, MM, MM_W, M, M_W}, Load) { h_load_hit; uu_profileDataHit; k_popMandatoryQueue; } transition({S, SM, O, OM, MM, MM_W, M, M_W}, Ifetch) { h_ifetch_hit; uu_profileInstHit; k_popMandatoryQueue; } // Transitions from Shared transition(S, Store, SM) { i_allocateTBE; b_issueGETX; uu_profileDataMiss; k_popMandatoryQueue; } transition(S, L1_Replacement, SI) { i_allocateTBE; dd_issuePUTS; forward_eviction_to_cpu; kk_deallocateL1CacheBlock; } transition(S, Inv, I) { f_sendAck; forward_eviction_to_cpu; l_popForwardQueue; } transition(S, Fwd_GETS) { e_sendData; l_popForwardQueue; } transition(S, Fwd_DMA) { e_sendData; ub_dmaUnblockL2Cache; l_popForwardQueue; } // Transitions from Owned transition(O, Store, OM) { i_allocateTBE; b_issueGETX; uu_profileDataMiss; k_popMandatoryQueue; } transition(O, L1_Replacement, OI) { i_allocateTBE; dd_issuePUTO; forward_eviction_to_cpu; kk_deallocateL1CacheBlock; } transition(O, Fwd_GETX, I) { ee_sendDataExclusive; forward_eviction_to_cpu; l_popForwardQueue; } transition(O, Fwd_GETS) { e_sendData; l_popForwardQueue; } transition(O, Fwd_DMA) { e_sendData; ub_dmaUnblockL2Cache; l_popForwardQueue; } // Transitions from MM transition({MM, MM_W}, Store) { hh_store_hit; uu_profileDataHit; k_popMandatoryQueue; } transition(MM, L1_Replacement, MI) { i_allocateTBE; d_issuePUTX; forward_eviction_to_cpu; kk_deallocateL1CacheBlock; } transition(MM, Fwd_GETX, I) { ee_sendDataExclusive; forward_eviction_to_cpu; l_popForwardQueue; } transition(MM, Fwd_GETS, I) { ee_sendDataExclusive; forward_eviction_to_cpu; l_popForwardQueue; } transition(MM, Fwd_DMA, MM) { e_sendData; ub_dmaUnblockL2Cache; l_popForwardQueue; } // Transitions from M transition(M, Store, MM) { hh_store_hit; uu_profileDataHit; k_popMandatoryQueue; } transition(M_W, Store, MM_W) { hh_store_hit; uu_profileDataHit; k_popMandatoryQueue; } transition(M, L1_Replacement, MI) { i_allocateTBE; d_issuePUTX; forward_eviction_to_cpu; kk_deallocateL1CacheBlock; } transition(M, Fwd_GETX, I) { // e_sendData; ee_sendDataExclusive; forward_eviction_to_cpu; l_popForwardQueue; } transition(M, Fwd_GETS, O) { e_sendData; l_popForwardQueue; } transition(M, Fwd_DMA) { e_sendData; ub_dmaUnblockL2Cache; l_popForwardQueue; } // Transitions from IM transition(IM, Inv) { f_sendAck; l_popForwardQueue; } transition(IM, Ack) { m_decrementNumberOfMessages; o_checkForCompletion; n_popResponseQueue; } transition(IM, {Exclusive_Data, Data}, OM) { u_writeDataToCache; m_decrementNumberOfMessages; o_checkForCompletion; n_popResponseQueue; } // Transitions from SM transition(SM, Inv, IM) { f_sendAck; forward_eviction_to_cpu; l_popForwardQueue; } transition(SM, Ack) { m_decrementNumberOfMessages; o_checkForCompletion; n_popResponseQueue; } transition(SM, {Data, Exclusive_Data}, OM) { // v_writeDataToCacheVerify; m_decrementNumberOfMessages; o_checkForCompletion; n_popResponseQueue; } transition(SM, Fwd_GETS) { e_sendData; l_popForwardQueue; } transition(SM, Fwd_DMA) { e_sendData; ub_dmaUnblockL2Cache; l_popForwardQueue; } // Transitions from OM transition(OM, Own_GETX) { mm_decrementNumberOfMessages; o_checkForCompletion; l_popForwardQueue; } // transition(OM, Fwd_GETX, OMF) { transition(OM, Fwd_GETX, IM) { ee_sendDataExclusive; l_popForwardQueue; } transition(OM, Fwd_GETS) { e_sendData; l_popForwardQueue; } transition(OM, Fwd_DMA) { e_sendData; ub_dmaUnblockL2Cache; l_popForwardQueue; } //transition({OM, OMF}, Ack) { transition(OM, Ack) { m_decrementNumberOfMessages; o_checkForCompletion; n_popResponseQueue; } transition(OM, All_acks, MM_W) { xx_store_hit; gg_sendUnblockExclusive; s_deallocateTBE; o_scheduleUseTimeout; j_popTriggerQueue; } transition(MM_W, Use_Timeout, MM) { jj_unsetUseTimer; } // Transitions from IS transition(IS, Inv) { f_sendAck; l_popForwardQueue; } transition(IS, Data, S) { u_writeDataToCache; m_decrementNumberOfMessages; hx_load_hit; g_sendUnblock; s_deallocateTBE; n_popResponseQueue; } transition(IS, Exclusive_Data, M_W) { u_writeDataToCache; m_decrementNumberOfMessages; hx_load_hit; gg_sendUnblockExclusive; o_scheduleUseTimeout; s_deallocateTBE; n_popResponseQueue; } transition(M_W, Use_Timeout, M) { jj_unsetUseTimer; } // Transitions from OI/MI transition(MI, Fwd_GETS, OI) { q_sendDataFromTBEToCache; l_popForwardQueue; } transition(MI, Fwd_DMA) { q_sendDataFromTBEToCache; ub_dmaUnblockL2Cache; l_popForwardQueue; } transition(MI, Fwd_GETX, II) { q_sendExclusiveDataFromTBEToCache; l_popForwardQueue; } transition({SI, OI}, Fwd_GETS) { q_sendDataFromTBEToCache; l_popForwardQueue; } transition({SI, OI}, Fwd_DMA) { q_sendDataFromTBEToCache; ub_dmaUnblockL2Cache; l_popForwardQueue; } transition(OI, Fwd_GETX, II) { q_sendExclusiveDataFromTBEToCache; l_popForwardQueue; } transition({SI, OI, MI}, Writeback_Ack_Data, I) { qq_sendWBDataFromTBEToL2; // always send data s_deallocateTBE; l_popForwardQueue; } transition({SI, OI, MI}, Writeback_Ack, I) { g_sendUnblock; s_deallocateTBE; l_popForwardQueue; } transition({MI, OI}, Writeback_Nack, OI) { // FIXME: This might cause deadlock by re-using the writeback // channel, we should handle this case differently. dd_issuePUTO; l_popForwardQueue; } // Transitions from II transition(II, {Writeback_Ack, Writeback_Ack_Data}, I) { g_sendUnblock; s_deallocateTBE; l_popForwardQueue; } // transition({II, SI}, Writeback_Nack, I) { transition(II, Writeback_Nack, I) { s_deallocateTBE; l_popForwardQueue; } transition(SI, Writeback_Nack) { dd_issuePUTS; l_popForwardQueue; } transition(II, Inv) { f_sendAck; l_popForwardQueue; } transition(SI, Inv, II) { f_sendAck; l_popForwardQueue; } }