/* * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * $Id$ */ machine(Directory, "Token protocol") : int directory_latency, int l2_select_low_bit, int l2_select_num_bits, bool distributed_persistent, int fixed_timeout_latency { MessageBuffer dmaResponseFromDir, network="To", virtual_network="0", ordered="true"; MessageBuffer responseFromDir, network="To", virtual_network="1", ordered="false"; MessageBuffer persistentFromDir, network="To", virtual_network="2", ordered="true"; MessageBuffer requestFromDir, network="To", virtual_network="4", ordered="false"; MessageBuffer responseToDir, network="From", virtual_network="1", ordered="false"; MessageBuffer persistentToDir, network="From", virtual_network="2", ordered="true"; MessageBuffer requestToDir, network="From", virtual_network="3", ordered="false"; MessageBuffer dmaRequestToDir, network="From", virtual_network="5", ordered="true"; // STATES enumeration(State, desc="Directory states", default="Directory_State_O") { // Base states O, desc="Owner"; NO, desc="Not Owner"; L, desc="Locked"; // Memory wait states - can block all messages including persistent requests O_W, desc="transitioning to Owner, waiting for memory write"; L_W, desc="transitioning to Locked, waiting for memory read"; DR_L_W, desc="transitioning to Locked underneath a DMA read, waiting for memory data"; NO_W, desc="transitioning to Not Owner, waiting for memory read"; O_DW_W, desc="transitioning to Owner, waiting for memory before DMA ack"; O_DR_W, desc="transitioning to Owner, waiting for memory before DMA data"; // DMA request transient states - must respond to persistent requests O_DW, desc="issued GETX for DMA write, waiting for all tokens"; NO_DW, desc="issued GETX for DMA write, waiting for all tokens"; NO_DR, desc="issued GETS for DMA read, waiting for data"; // DMA request in progress - competing with a CPU persistent request DW_L, desc="issued GETX for DMA write, CPU persistent request must complete first"; DR_L, desc="issued GETS for DMA read, CPU persistent request must complete first"; } // Events enumeration(Event, desc="Directory events") { GETX, desc="A GETX arrives"; GETS, desc="A GETS arrives"; Lockdown, desc="A lockdown request arrives"; Unlockdown, desc="An un-lockdown request arrives"; Own_Lock_or_Unlock, desc="own lock or unlock"; Data_Owner, desc="Data arrive"; Data_All_Tokens, desc="Data and all tokens"; Ack_Owner, desc="Owner token arrived without data because it was clean"; Ack_Owner_All_Tokens, desc="All tokens including owner arrived without data because it was clean"; Tokens, desc="Tokens arrive"; Ack_All_Tokens, desc="All_Tokens arrive"; Request_Timeout, desc="A DMA request has timed out"; // Memory Controller Memory_Data, desc="Fetched data from memory arrives"; Memory_Ack, desc="Writeback Ack from memory arrives"; // DMA requests DMA_READ, desc="A DMA Read memory request"; DMA_WRITE, desc="A DMA Write memory request"; DMA_WRITE_All_Tokens, desc="A DMA Write memory request, directory has all tokens"; } // TYPES // DirectoryEntry structure(Entry, desc="...") { State DirectoryState, desc="Directory state"; DataBlock DataBlk, desc="data for the block"; int Tokens, default="max_tokens()", desc="Number of tokens for the line we're holding"; // The following state is provided to allow for bandwidth // efficient directory-like operation. However all of this state // is 'soft state' that does not need to be correct (as long as // you're eventually willing to resort to broadcast.) Set Owner, desc="Probable Owner of the line. More accurately, the set of processors who need to see a GetS or GetO. We use a Set for convenience, but only one bit is set at a time."; Set Sharers, desc="Probable sharers of the line. More accurately, the set of processors who need to see a GetX"; } external_type(DirectoryMemory) { Entry lookup(Address); bool isPresent(Address); } external_type(MemoryControl, inport="yes", outport="yes") { } external_type(PersistentTable) { void persistentRequestLock(Address, MachineID, AccessType); void persistentRequestUnlock(Address, MachineID); bool okToIssueStarving(Address, MachineID); MachineID findSmallest(Address); AccessType typeOfSmallest(Address); void markEntries(Address); bool isLocked(Address); int countStarvingForAddress(Address); int countReadStarvingForAddress(Address); } // TBE entries for DMA requests structure(TBE, desc="TBE entries for outstanding DMA requests") { Address PhysicalAddress, desc="physical address"; State TBEState, desc="Transient State"; DataBlock DmaDataBlk, desc="DMA Data to be written. Partial blocks need to merged with system memory"; DataBlock DataBlk, desc="The current view of system memory"; int Len, desc="..."; MachineID DmaRequestor, desc="DMA requestor"; bool WentPersistent, desc="Did the DMA request require a persistent request"; } external_type(TBETable) { TBE lookup(Address); void allocate(Address); void deallocate(Address); bool isPresent(Address); } // ** OBJECTS ** DirectoryMemory directory, factory='RubySystem::getDirectory(m_cfg["directory_name"])'; MemoryControl memBuffer, factory='RubySystem::getMemoryControl(m_cfg["memory_controller_name"])'; PersistentTable persistentTable; TimerTable reissueTimerTable; TBETable TBEs, template_hack=""; bool starving, default="false"; State getState(Address addr) { if (TBEs.isPresent(addr)) { return TBEs[addr].TBEState; } else { return directory[addr].DirectoryState; } } void setState(Address addr, State state) { if (TBEs.isPresent(addr)) { TBEs[addr].TBEState := state; } directory[addr].DirectoryState := state; if (state == State:L) { assert(directory[addr].Tokens == 0); } // We have one or zero owners assert((directory[addr].Owner.count() == 0) || (directory[addr].Owner.count() == 1)); // Make sure the token count is in range assert(directory[addr].Tokens >= 0); assert(directory[addr].Tokens <= max_tokens()); if (state == State:O) { assert(directory[addr].Tokens >= 1); // Must have at least one token // assert(directory[addr].Tokens >= (max_tokens() / 2)); // Only mostly true; this might not always hold } } bool okToIssueStarving(Address addr, MachineID machinID) { return persistentTable.okToIssueStarving(addr, machineID); } void markPersistentEntries(Address addr) { persistentTable.markEntries(addr); } // ** OUT_PORTS ** out_port(responseNetwork_out, ResponseMsg, responseFromDir); out_port(persistentNetwork_out, PersistentMsg, persistentFromDir); out_port(requestNetwork_out, RequestMsg, requestFromDir); out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaResponseFromDir); // // Memory buffer for memory controller to DIMM communication // out_port(memQueue_out, MemoryMsg, memBuffer); // ** IN_PORTS ** // off-chip memory request/response is done in_port(memQueue_in, MemoryMsg, memBuffer) { if (memQueue_in.isReady()) { peek(memQueue_in, MemoryMsg) { if (in_msg.Type == MemoryRequestType:MEMORY_READ) { trigger(Event:Memory_Data, in_msg.Address); } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) { trigger(Event:Memory_Ack, in_msg.Address); } else { DEBUG_EXPR(in_msg.Type); error("Invalid message"); } } } } // Reissue Timer in_port(reissueTimerTable_in, Address, reissueTimerTable) { if (reissueTimerTable_in.isReady()) { trigger(Event:Request_Timeout, reissueTimerTable.readyAddress()); } } in_port(responseNetwork_in, ResponseMsg, responseToDir) { if (responseNetwork_in.isReady()) { peek(responseNetwork_in, ResponseMsg) { assert(in_msg.Destination.isElement(machineID)); if (directory[in_msg.Address].Tokens + in_msg.Tokens == max_tokens()) { if ((in_msg.Type == CoherenceResponseType:DATA_OWNER) || (in_msg.Type == CoherenceResponseType:DATA_SHARED)) { trigger(Event:Data_All_Tokens, in_msg.Address); } else if (in_msg.Type == CoherenceResponseType:ACK_OWNER) { trigger(Event:Ack_Owner_All_Tokens, in_msg.Address); } else if (in_msg.Type == CoherenceResponseType:ACK) { trigger(Event:Ack_All_Tokens, in_msg.Address); } else { DEBUG_EXPR(in_msg.Type); error("Invalid message"); } } else { if (in_msg.Type == CoherenceResponseType:DATA_OWNER) { trigger(Event:Data_Owner, in_msg.Address); } else if ((in_msg.Type == CoherenceResponseType:ACK) || (in_msg.Type == CoherenceResponseType:DATA_SHARED)) { trigger(Event:Tokens, in_msg.Address); } else if (in_msg.Type == CoherenceResponseType:ACK_OWNER) { trigger(Event:Ack_Owner, in_msg.Address); } else { DEBUG_EXPR(in_msg.Type); error("Invalid message"); } } } } } in_port(persistentNetwork_in, PersistentMsg, persistentToDir) { if (persistentNetwork_in.isReady()) { peek(persistentNetwork_in, PersistentMsg) { assert(in_msg.Destination.isElement(machineID)); if (distributed_persistent) { // Apply the lockdown or unlockdown message to the table if (in_msg.Type == PersistentRequestType:GETX_PERSISTENT) { persistentTable.persistentRequestLock(in_msg.Address, in_msg.Requestor, AccessType:Write); } else if (in_msg.Type == PersistentRequestType:GETS_PERSISTENT) { persistentTable.persistentRequestLock(in_msg.Address, in_msg.Requestor, AccessType:Read); } else if (in_msg.Type == PersistentRequestType:DEACTIVATE_PERSISTENT) { persistentTable.persistentRequestUnlock(in_msg.Address, in_msg.Requestor); } else { error("Invalid message"); } // React to the message based on the current state of the table if (persistentTable.isLocked(in_msg.Address)) { trigger(Event:Lockdown, in_msg.Address); // locked } else { trigger(Event:Unlockdown, in_msg.Address); // unlocked } } else { if (in_msg.Type == PersistentRequestType:GETX_PERSISTENT) { trigger(Event:Lockdown, in_msg.Address); // locked } else if (in_msg.Type == PersistentRequestType:GETS_PERSISTENT) { trigger(Event:Lockdown, in_msg.Address); // locked } else if (in_msg.Type == PersistentRequestType:DEACTIVATE_PERSISTENT) { trigger(Event:Unlockdown, in_msg.Address); // unlocked } else { error("Invalid message"); } } } } } in_port(requestNetwork_in, RequestMsg, requestToDir) { if (requestNetwork_in.isReady()) { peek(requestNetwork_in, RequestMsg) { assert(in_msg.Destination.isElement(machineID)); if (in_msg.Type == CoherenceRequestType:GETS) { trigger(Event:GETS, in_msg.Address); } else if (in_msg.Type == CoherenceRequestType:GETX) { trigger(Event:GETX, in_msg.Address); } else { error("Invalid message"); } } } } in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) { if (dmaRequestQueue_in.isReady()) { peek(dmaRequestQueue_in, DMARequestMsg) { if (in_msg.Type == DMARequestType:READ) { trigger(Event:DMA_READ, in_msg.LineAddress); } else if (in_msg.Type == DMARequestType:WRITE) { if (directory[in_msg.LineAddress].Tokens == max_tokens()) { trigger(Event:DMA_WRITE_All_Tokens, in_msg.LineAddress); } else { trigger(Event:DMA_WRITE, in_msg.LineAddress); } } else { error("Invalid message"); } } } } // Actions action(a_sendTokens, "a", desc="Send tokens to requestor") { // Only send a message if we have tokens to send if (directory[address].Tokens > 0) { peek(requestNetwork_in, RequestMsg) { // enqueue(responseNetwork_out, ResponseMsg, latency="DIRECTORY_CACHE_LATENCY") {// FIXME? enqueue(responseNetwork_out, ResponseMsg, latency=directory_latency) {// FIXME? out_msg.Address := address; out_msg.Type := CoherenceResponseType:ACK; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:Directory; out_msg.Destination.add(in_msg.Requestor); out_msg.Tokens := directory[in_msg.Address].Tokens; out_msg.MessageSize := MessageSizeType:Response_Control; } } directory[address].Tokens := 0; } } action(px_tryIssuingPersistentGETXRequest, "px", desc="...") { if (okToIssueStarving(address, machineID) && (starving == false)) { enqueue(persistentNetwork_out, PersistentMsg, latency = "1") { out_msg.Address := address; out_msg.Type := PersistentRequestType:GETX_PERSISTENT; out_msg.Requestor := machineID; out_msg.RequestorMachine := MachineType:Directory; out_msg.Destination.broadcast(MachineType:L1Cache); // // Currently the configuration system limits the system to only one // chip. Therefore, if we assume one shared L2 cache, then only one // pertinent L2 cache exist. // //out_msg.Destination.addNetDest(getAllPertinentL2Banks(address)); out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits)); out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Persistent_Control; out_msg.Prefetch := PrefetchBit:No; out_msg.AccessMode := AccessModeType:SupervisorMode; } markPersistentEntries(address); starving := true; TBEs[address].WentPersistent := true; // Do not schedule a wakeup, a persistent requests will always complete } else { // We'd like to issue a persistent request, but are not allowed // to issue a P.R. right now. This, we do not increment the // IssueCount. // Set a wakeup timer reissueTimerTable.set(address, 10); } } action(bw_broadcastWrite, "bw", desc="Broadcast GETX if we need tokens") { peek(dmaRequestQueue_in, DMARequestMsg) { // // Assser that we only send message if we don't already have all the tokens // assert(directory[address].Tokens != max_tokens()); enqueue(requestNetwork_out, RequestMsg, latency = "1") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GETX; out_msg.Requestor := machineID; out_msg.RequestorMachine := MachineType:Directory; // // Since only one chip, assuming all L1 caches are local // out_msg.Destination.broadcast(MachineType:L1Cache); out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits)); out_msg.RetryNum := 0; out_msg.MessageSize := MessageSizeType:Request_Control; out_msg.Prefetch := PrefetchBit:No; out_msg.AccessMode := AccessModeType:SupervisorMode; } } } action(ps_tryIssuingPersistentGETSRequest, "ps", desc="...") { if (okToIssueStarving(address, machineID) && (starving == false)) { enqueue(persistentNetwork_out, PersistentMsg, latency = "1") { out_msg.Address := address; out_msg.Type := PersistentRequestType:GETS_PERSISTENT; out_msg.Requestor := machineID; out_msg.RequestorMachine := MachineType:Directory; out_msg.Destination.broadcast(MachineType:L1Cache); // // Currently the configuration system limits the system to only one // chip. Therefore, if we assume one shared L2 cache, then only one // pertinent L2 cache exist. // //out_msg.Destination.addNetDest(getAllPertinentL2Banks(address)); out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits)); out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Persistent_Control; out_msg.Prefetch := PrefetchBit:No; out_msg.AccessMode := AccessModeType:SupervisorMode; } markPersistentEntries(address); starving := true; TBEs[address].WentPersistent := true; // Do not schedule a wakeup, a persistent requests will always complete } else { // We'd like to issue a persistent request, but are not allowed // to issue a P.R. right now. This, we do not increment the // IssueCount. // Set a wakeup timer reissueTimerTable.set(address, 10); } } action(br_broadcastRead, "br", desc="Broadcast GETS for data") { peek(dmaRequestQueue_in, DMARequestMsg) { enqueue(requestNetwork_out, RequestMsg, latency = "1") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GETS; out_msg.Requestor := machineID; out_msg.RequestorMachine := MachineType:Directory; // // Since only one chip, assuming all L1 caches are local // out_msg.Destination.broadcast(MachineType:L1Cache); out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits)); out_msg.RetryNum := 0; out_msg.MessageSize := MessageSizeType:Request_Control; out_msg.Prefetch := PrefetchBit:No; out_msg.AccessMode := AccessModeType:SupervisorMode; } } } action(aa_sendTokensToStarver, "\a", desc="Send tokens to starver") { // Only send a message if we have tokens to send if (directory[address].Tokens > 0) { // enqueue(responseNetwork_out, ResponseMsg, latency="DIRECTORY_CACHE_LATENCY") {// FIXME? enqueue(responseNetwork_out, ResponseMsg, latency=directory_latency) {// FIXME? out_msg.Address := address; out_msg.Type := CoherenceResponseType:ACK; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:Directory; out_msg.Destination.add(persistentTable.findSmallest(address)); out_msg.Tokens := directory[address].Tokens; out_msg.MessageSize := MessageSizeType:Response_Control; } directory[address].Tokens := 0; } } action(d_sendMemoryDataWithAllTokens, "d", desc="Send data and tokens to requestor") { peek(memQueue_in, MemoryMsg) { enqueue(responseNetwork_out, ResponseMsg, latency="1") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:DATA_OWNER; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:Directory; out_msg.Destination.add(in_msg.OriginalRequestorMachId); assert(directory[address].Tokens > 0); out_msg.Tokens := directory[in_msg.Address].Tokens; out_msg.DataBlk := directory[in_msg.Address].DataBlk; out_msg.Dirty := false; out_msg.MessageSize := MessageSizeType:Response_Data; } } directory[address].Tokens := 0; } action(dd_sendDataWithAllTokensToStarver, "\d", desc="Send data and tokens to starver") { peek(memQueue_in, MemoryMsg) { enqueue(responseNetwork_out, ResponseMsg, latency="1") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:DATA_OWNER; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:Directory; out_msg.Destination.add(persistentTable.findSmallest(address)); assert(directory[address].Tokens > 0); out_msg.Tokens := directory[address].Tokens; out_msg.DataBlk := directory[address].DataBlk; out_msg.Dirty := false; out_msg.MessageSize := MessageSizeType:Response_Data; } } directory[address].Tokens := 0; } action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") { peek(requestNetwork_in, RequestMsg) { enqueue(memQueue_out, MemoryMsg, latency="1") { out_msg.Address := address; out_msg.Type := MemoryRequestType:MEMORY_READ; out_msg.Sender := machineID; out_msg.OriginalRequestorMachId := in_msg.Requestor; out_msg.MessageSize := in_msg.MessageSize; out_msg.DataBlk := directory[address].DataBlk; DEBUG_EXPR(out_msg); } } } action(fd_memoryDma, "fd", desc="Queue off-chip fetch request") { peek(dmaRequestQueue_in, DMARequestMsg) { enqueue(memQueue_out, MemoryMsg, latency="1") { out_msg.Address := address; out_msg.Type := MemoryRequestType:MEMORY_READ; out_msg.Sender := machineID; out_msg.OriginalRequestorMachId := in_msg.Requestor; out_msg.MessageSize := in_msg.MessageSize; out_msg.DataBlk := directory[address].DataBlk; DEBUG_EXPR(out_msg); } } } action(lq_queueMemoryWbRequest, "lq", desc="Write data to memory") { enqueue(memQueue_out, MemoryMsg, latency="1") { out_msg.Address := address; out_msg.Type := MemoryRequestType:MEMORY_WB; DEBUG_EXPR(out_msg); } } action(ld_queueMemoryDmaWriteFromTbe, "ld", desc="Write DMA data to memory") { enqueue(memQueue_out, MemoryMsg, latency="1") { out_msg.Address := address; out_msg.Type := MemoryRequestType:MEMORY_WB; // first, initialize the data blk to the current version of system memory out_msg.DataBlk := TBEs[address].DataBlk; // then add the dma write data out_msg.DataBlk.copyPartial(TBEs[address].DmaDataBlk, addressOffset(TBEs[address].PhysicalAddress), TBEs[address].Len); DEBUG_EXPR(out_msg); } } action(lr_queueMemoryDmaReadWriteback, "lr", desc="Write DMA data from read to memory") { enqueue(memQueue_out, MemoryMsg, latency="1") { out_msg.Address := address; out_msg.Type := MemoryRequestType:MEMORY_WB; // first, initialize the data blk to the current version of system memory out_msg.DataBlk := TBEs[address].DataBlk; DEBUG_EXPR(out_msg); } } action(vd_allocateDmaRequestInTBE, "vd", desc="Record Data in TBE") { peek(dmaRequestQueue_in, DMARequestMsg) { TBEs.allocate(address); TBEs[address].DmaDataBlk := in_msg.DataBlk; TBEs[address].PhysicalAddress := in_msg.PhysicalAddress; TBEs[address].Len := in_msg.Len; TBEs[address].DmaRequestor := in_msg.Requestor; TBEs[address].WentPersistent := false; } } action(s_deallocateTBE, "s", desc="Deallocate TBE") { if (TBEs[address].WentPersistent) { assert(starving == true); enqueue(persistentNetwork_out, PersistentMsg, latency = "1") { out_msg.Address := address; out_msg.Type := PersistentRequestType:DEACTIVATE_PERSISTENT; out_msg.Requestor := machineID; out_msg.RequestorMachine := MachineType:Directory; out_msg.Destination.broadcast(MachineType:L1Cache); // // Currently the configuration system limits the system to only one // chip. Therefore, if we assume one shared L2 cache, then only one // pertinent L2 cache exist. // //out_msg.Destination.addNetDest(getAllPertinentL2Banks(address)); out_msg.Destination.add(mapAddressToRange(address, MachineType:L2Cache, l2_select_low_bit, l2_select_num_bits)); out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Persistent_Control; } starving := false; } TBEs.deallocate(address); } action(rd_recordDataInTbe, "rd", desc="Record data in TBE") { peek(responseNetwork_in, ResponseMsg) { TBEs[address].DataBlk := in_msg.DataBlk; } } action(cd_writeCleanDataToTbe, "cd", desc="Write clean memory data to TBE") { TBEs[address].DataBlk := directory[address].DataBlk; } action(dwt_writeDmaDataFromTBE, "dwt", desc="DMA Write data to memory from TBE") { directory[address].DataBlk := TBEs[address].DataBlk; directory[address].DataBlk.copyPartial(TBEs[address].DmaDataBlk, addressOffset(TBEs[address].PhysicalAddress), TBEs[address].Len); } action(f_incrementTokens, "f", desc="Increment the number of tokens we're tracking") { peek(responseNetwork_in, ResponseMsg) { assert(in_msg.Tokens >= 1); directory[address].Tokens := directory[address].Tokens + in_msg.Tokens; } } action(j_popIncomingRequestQueue, "j", desc="Pop incoming request queue") { requestNetwork_in.dequeue(); } action(z_recycleRequest, "z", desc="Recycle the request queue") { requestNetwork_in.recycle(); } action(k_popIncomingResponseQueue, "k", desc="Pop incoming response queue") { responseNetwork_in.dequeue(); } action(kz_recycleResponse, "kz", desc="Recycle incoming response queue") { responseNetwork_in.recycle(); } action(l_popIncomingPersistentQueue, "l", desc="Pop incoming persistent queue") { persistentNetwork_in.dequeue(); } action(p_popDmaRequestQueue, "pd", desc="pop dma request queue") { dmaRequestQueue_in.dequeue(); } action(y_recycleDmaRequestQueue, "y", desc="recycle dma request queue") { dmaRequestQueue_in.recycle(); } action(l_popMemQueue, "q", desc="Pop off-chip request queue") { memQueue_in.dequeue(); } action(m_writeDataToMemory, "m", desc="Write dirty writeback to memory") { peek(responseNetwork_in, ResponseMsg) { directory[in_msg.Address].DataBlk := in_msg.DataBlk; DEBUG_EXPR(in_msg.Address); DEBUG_EXPR(in_msg.DataBlk); } } action(n_checkData, "n", desc="Check incoming clean data message") { peek(responseNetwork_in, ResponseMsg) { assert(directory[in_msg.Address].DataBlk == in_msg.DataBlk); } } action(r_bounceResponse, "r", desc="Bounce response to starving processor") { peek(responseNetwork_in, ResponseMsg) { enqueue(responseNetwork_out, ResponseMsg, latency="1") { out_msg.Address := address; out_msg.Type := in_msg.Type; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:Directory; out_msg.Destination.add(persistentTable.findSmallest(address)); out_msg.Tokens := in_msg.Tokens; out_msg.MessageSize := in_msg.MessageSize; out_msg.DataBlk := in_msg.DataBlk; out_msg.Dirty := in_msg.Dirty; } } } action(st_scheduleTimeout, "st", desc="Schedule Timeout") { // // currently only support a fixed timeout latency // reissueTimerTable.set(address, fixed_timeout_latency); } action(ut_unsetReissueTimer, "ut", desc="Unset reissue timer.") { if (reissueTimerTable.isSet(address)) { reissueTimerTable.unset(address); } } action(bd_bounceDatalessOwnerToken, "bd", desc="Bounce clean owner token to starving processor") { peek(responseNetwork_in, ResponseMsg) { assert(in_msg.Type == CoherenceResponseType:ACK_OWNER); assert(in_msg.Dirty == false); assert(in_msg.MessageSize == MessageSizeType:Writeback_Control); // NOTE: The following check would not be valid in a real // implementation. We include the data in the "dataless" // message so we can assert the clean data matches the datablock // in memory assert(directory[in_msg.Address].DataBlk == in_msg.DataBlk); // Bounce the message, but "re-associate" the data and the owner // token. In essence we're converting an ACK_OWNER message to a // DATA_OWNER message, keeping the number of tokens the same. enqueue(responseNetwork_out, ResponseMsg, latency="1") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:DATA_OWNER; out_msg.Sender := machineID; out_msg.SenderMachine := MachineType:Directory; out_msg.DestMachine := MachineType:L1Cache; out_msg.Destination.add(persistentTable.findSmallest(address)); out_msg.Tokens := in_msg.Tokens; out_msg.DataBlk := directory[in_msg.Address].DataBlk; out_msg.Dirty := in_msg.Dirty; out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(da_sendDmaAck, "da", desc="Send Ack to DMA controller") { enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") { out_msg.PhysicalAddress := address; out_msg.LineAddress := address; out_msg.Type := DMAResponseType:ACK; out_msg.Destination.add(TBEs[address].DmaRequestor); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } action(dm_sendMemoryDataToDma, "dm", desc="Send Data to DMA controller from memory") { peek(memQueue_in, MemoryMsg) { enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") { out_msg.PhysicalAddress := address; out_msg.LineAddress := address; out_msg.Type := DMAResponseType:DATA; // // we send the entire data block and rely on the dma controller to // split it up if need be // out_msg.DataBlk := in_msg.DataBlk; out_msg.Destination.add(TBEs[address].DmaRequestor); out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(dd_sendDmaData, "dd", desc="Send Data to DMA controller") { peek(responseNetwork_in, ResponseMsg) { enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") { out_msg.PhysicalAddress := address; out_msg.LineAddress := address; out_msg.Type := DMAResponseType:DATA; // // we send the entire data block and rely on the dma controller to // split it up if need be // out_msg.DataBlk := in_msg.DataBlk; out_msg.Destination.add(TBEs[address].DmaRequestor); out_msg.MessageSize := MessageSizeType:Response_Data; } } } // TRANSITIONS // // Trans. from base state O // the directory has valid data // transition(O, GETX, NO_W) { qf_queueMemoryFetchRequest; j_popIncomingRequestQueue; } transition(O, DMA_WRITE, O_DW) { vd_allocateDmaRequestInTBE; bw_broadcastWrite; st_scheduleTimeout; p_popDmaRequestQueue; } transition(O, DMA_WRITE_All_Tokens, O_DW_W) { vd_allocateDmaRequestInTBE; cd_writeCleanDataToTbe; dwt_writeDmaDataFromTBE; ld_queueMemoryDmaWriteFromTbe; p_popDmaRequestQueue; } transition(O, GETS, NO_W) { qf_queueMemoryFetchRequest; j_popIncomingRequestQueue; } transition(O, DMA_READ, O_DR_W) { vd_allocateDmaRequestInTBE; fd_memoryDma; st_scheduleTimeout; p_popDmaRequestQueue; } transition(O, Lockdown, L_W) { qf_queueMemoryFetchRequest; l_popIncomingPersistentQueue; } transition(O, {Tokens, Ack_All_Tokens}) { f_incrementTokens; k_popIncomingResponseQueue; } transition(O, {Data_Owner, Data_All_Tokens}) { n_checkData; f_incrementTokens; k_popIncomingResponseQueue; } // // transitioning to Owner, waiting for memory before DMA ack // All other events should recycle/stall // transition(O_DR_W, Memory_Data, O) { dm_sendMemoryDataToDma; ut_unsetReissueTimer; s_deallocateTBE; l_popMemQueue; } // // issued GETX for DMA write, waiting for all tokens // transition(O_DW, Tokens) { f_incrementTokens; k_popIncomingResponseQueue; } transition(O_DW, Data_Owner) { f_incrementTokens; rd_recordDataInTbe; k_popIncomingResponseQueue; } transition(O_DW, Ack_Owner) { f_incrementTokens; cd_writeCleanDataToTbe; k_popIncomingResponseQueue; } transition(O_DW, Lockdown, DW_L) { l_popIncomingPersistentQueue; } transition({NO_DW, O_DW}, Data_All_Tokens, O_DW_W) { f_incrementTokens; rd_recordDataInTbe; dwt_writeDmaDataFromTBE; ld_queueMemoryDmaWriteFromTbe; ut_unsetReissueTimer; k_popIncomingResponseQueue; } transition(O_DW, Ack_All_Tokens, O_DW_W) { f_incrementTokens; dwt_writeDmaDataFromTBE; ld_queueMemoryDmaWriteFromTbe; ut_unsetReissueTimer; k_popIncomingResponseQueue; } transition(O_DW, Ack_Owner_All_Tokens, O_DW_W) { f_incrementTokens; cd_writeCleanDataToTbe; dwt_writeDmaDataFromTBE; ld_queueMemoryDmaWriteFromTbe; ut_unsetReissueTimer; k_popIncomingResponseQueue; } transition(O_DW_W, Memory_Ack, O) { da_sendDmaAck; s_deallocateTBE; l_popMemQueue; } // // Trans. from NO // The direcotry does not have valid data, but may have some tokens // transition(NO, GETX) { a_sendTokens; j_popIncomingRequestQueue; } transition(NO, DMA_WRITE, NO_DW) { vd_allocateDmaRequestInTBE; bw_broadcastWrite; st_scheduleTimeout; p_popDmaRequestQueue; } transition(NO, GETS) { j_popIncomingRequestQueue; } transition(NO, DMA_READ, NO_DR) { vd_allocateDmaRequestInTBE; br_broadcastRead; st_scheduleTimeout; p_popDmaRequestQueue; } transition(NO, Lockdown, L) { aa_sendTokensToStarver; l_popIncomingPersistentQueue; } transition(NO, {Data_Owner, Data_All_Tokens}, O_W) { m_writeDataToMemory; f_incrementTokens; lq_queueMemoryWbRequest; k_popIncomingResponseQueue; } transition(NO, {Ack_Owner, Ack_Owner_All_Tokens}, O) { n_checkData; f_incrementTokens; k_popIncomingResponseQueue; } transition(NO, Tokens) { f_incrementTokens; k_popIncomingResponseQueue; } transition(NO_W, Memory_Data, NO) { d_sendMemoryDataWithAllTokens; l_popMemQueue; } // Trans. from NO_DW transition(NO_DW, Request_Timeout) { ut_unsetReissueTimer; px_tryIssuingPersistentGETXRequest; } transition(NO_DW, Lockdown, DW_L) { aa_sendTokensToStarver; l_popIncomingPersistentQueue; } // Note: NO_DW, Data_All_Tokens transition is combined with O_DW // Note: NO_DW should not receive the action Ack_All_Tokens because the // directory does not have valid data transition(NO_DW, Data_Owner, O_DW) { f_incrementTokens; rd_recordDataInTbe; lq_queueMemoryWbRequest; k_popIncomingResponseQueue; } transition({NO_DW, NO_DR}, Tokens) { f_incrementTokens; k_popIncomingResponseQueue; } // Trans. from NO_DR transition(NO_DR, Request_Timeout) { ut_unsetReissueTimer; ps_tryIssuingPersistentGETSRequest; } transition(NO_DR, Lockdown, DR_L) { aa_sendTokensToStarver; l_popIncomingPersistentQueue; } transition(NO_DR, {Data_Owner, Data_All_Tokens}, O_W) { m_writeDataToMemory; f_incrementTokens; dd_sendDmaData; lr_queueMemoryDmaReadWriteback; ut_unsetReissueTimer; s_deallocateTBE; k_popIncomingResponseQueue; } // Trans. from L transition({L, DW_L, DR_L}, {GETX, GETS}) { j_popIncomingRequestQueue; } transition({L, DW_L, DR_L, L_W, DR_L_W}, Lockdown) { l_popIncomingPersistentQueue; } // // Received data for lockdown blocks // For blocks with outstanding dma requests to them // ...we could change this to write the data to memory and send it cleanly // ...we could also proactively complete our DMA requests // However, to keep my mind from spinning out-of-control, we won't for now :) // transition({DW_L, DR_L, L}, {Data_Owner, Data_All_Tokens}) { r_bounceResponse; k_popIncomingResponseQueue; } transition({DW_L, DR_L, L}, Tokens) { r_bounceResponse; k_popIncomingResponseQueue; } transition({DW_L, DR_L, L}, {Ack_Owner_All_Tokens, Ack_Owner}) { bd_bounceDatalessOwnerToken; k_popIncomingResponseQueue; } transition(L, Unlockdown, NO) { l_popIncomingPersistentQueue; } transition(L_W, Memory_Data, L) { dd_sendDataWithAllTokensToStarver; l_popMemQueue; } transition(DR_L_W, Memory_Data, DR_L) { dd_sendDataWithAllTokensToStarver; l_popMemQueue; } transition(DW_L, {Unlockdown, Own_Lock_or_Unlock}, NO_DW) { l_popIncomingPersistentQueue; } transition(DR_L_W, {Unlockdown, Own_Lock_or_Unlock}, O_DR_W) { l_popIncomingPersistentQueue; } transition({DW_L, DR_L_W}, Request_Timeout) { ut_unsetReissueTimer; px_tryIssuingPersistentGETXRequest; } transition(DR_L, {Unlockdown, Own_Lock_or_Unlock}, NO_DR) { l_popIncomingPersistentQueue; } transition(DR_L, Request_Timeout) { ut_unsetReissueTimer; ps_tryIssuingPersistentGETSRequest; } transition(O_W, Memory_Ack, O) { l_popMemQueue; } transition({O, NO, L, O_DW, NO_DW, NO_DR}, Own_Lock_or_Unlock) { l_popIncomingPersistentQueue; } // Blocked states transition({NO_W, O_W, L_W, DR_L_W, O_DW_W, O_DR_W, O_DW, NO_DW, NO_DR}, {GETX, GETS}) { z_recycleRequest; } transition({NO_W, O_W, L_W, DR_L_W, O_DW_W, O_DR_W, O_DW, NO_DW, NO_DR, L, DW_L, DR_L}, {DMA_READ, DMA_WRITE}) { y_recycleDmaRequestQueue; } transition({NO_W, O_W, L_W, DR_L_W, O_DW_W, O_DR_W}, {Data_Owner, Ack_Owner, Tokens}) { kz_recycleResponse; } transition({NO_W, O_W}, Lockdown, L_W) { l_popIncomingPersistentQueue; } transition(O_DR_W, Lockdown, DR_L_W) { l_popIncomingPersistentQueue; } transition({NO_W, O_W, O_DR_W}, {Unlockdown, Own_Lock_or_Unlock}) { l_popIncomingPersistentQueue; } }