/* * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * $Id$ */ machine(L1Cache, "MOSI Broadcast Optimized") { MessageBuffer addressFromCache, network="To", virtual_network="0", ordered="true"; MessageBuffer dataFromCache, network="To", virtual_network="1", ordered="false"; MessageBuffer addressToCache, network="From", virtual_network="0", ordered="true"; MessageBuffer dataToCache, network="From", virtual_network="1", ordered="false"; // STATES enumeration(State, desc="Cache states", default="L1Cache_State_I") { NP, desc="Not Present"; I, desc="Idle"; S, desc="Shared"; O, desc="Owned"; M, desc="Modified", format="!b"; IS_AD, "IS^AD", desc="idle, issued GETS, have not seen GETS or data yet"; IM_AD, "IM^AD", desc="idle, issued GETX, have not seen GETX or data yet"; SM_AD, "SM^AD",desc="shared, issued GETX, have not seen GETX or data yet"; OM_A, "OM^A",desc="owned, issued GETX, have not seen GETX yet", format="!b"; IS_A, "IS^A",desc="idle, issued GETS, have not seen GETS, have seen data"; IM_A, "IM^A",desc="idle, issued GETX, have not seen GETX, have seen data"; SM_A, "SM^A",desc="shared, issued GETX, have not seen GETX, have seen data", format="!b"; MI_A, "MI^A", desc="modified, issued PUTX, have not seen PUTX yet"; OI_A, "OI^A", desc="owned, issued PUTX, have not seen PUTX yet"; II_A, "II^A", desc="modified, issued PUTX, have not seen PUTX, then saw other GETX", format="!b"; IS_D, "IS^D", desc="idle, issued GETS, have seen GETS, have not seen data yet"; IS_D_I, "IS^D^I", desc="idle, issued GETS, have seen GETS, have not seen data, then saw other GETX"; IM_D, "IM^D", desc="idle, issued GETX, have seen GETX, have not seen data yet"; IM_D_O, "IM^D^O", desc="idle, issued GETX, have seen GETX, have not seen data yet, then saw other GETS"; IM_D_I, "IM^D^I", desc="idle, issued GETX, have seen GETX, have not seen data yet, then saw other GETX"; IM_D_OI, "IM^D^OI", desc="idle, issued GETX, have seen GETX, have not seen data yet, then saw other GETS, then saw other GETX"; SM_D, "SM^D", desc="shared, issued GETX, have seen GETX, have not seen data yet"; SM_D_O, "SM^D^O", desc="shared, issued GETX, have seen GETX, have not seen data yet, then saw other GETS"; } // ** EVENTS ** enumeration(Event, desc="Cache events") { // From processor Load, desc="Load request from the processor"; Ifetch, desc="I-fetch request from the processor"; Store, desc="Store request from the processor"; L1_to_L2, desc="L1 to L2 transfer"; L2_to_L1D, desc="L2 to L1-Data transfer"; L2_to_L1I, desc="L2 to L1-Instruction transfer"; L2_Replacement, desc="L2 Replacement"; // From Address network Own_GETS, desc="Occurs when we observe our own GETS request in the global order"; Own_GET_INSTR, desc="Occurs when we observe our own GETInstr request in the global order"; Own_GETX, desc="Occurs when we observe our own GETX request in the global order"; Own_PUTX, desc="Occurs when we observe our own PUTX request in the global order", format="!r"; Other_GETS, desc="Occurs when we observe a GETS request from another processor"; Other_GET_INSTR, desc="Occurs when we observe a GETInstr request from another processor"; Other_GETX, desc="Occurs when we observe a GETX request from another processor"; Other_PUTX, desc="Occurs when we observe a PUTX request from another processor", format="!r"; // From Data network Data, desc="Data for this block from the data network"; } // TYPES // CacheEntry structure(Entry, desc="...", interface="AbstractCacheEntry") { State CacheState, desc="cache state"; DataBlock DataBlk, desc="data for the block"; } // TBE fields structure(TBE, desc="...") { Address Address, desc="Physical address for this TBE"; State TBEState, desc="Transient state"; DataBlock DataBlk, desc="Buffer for the data block"; NetDest ForwardIDs, desc="IDs of the processors to forward the block"; Address ForwardAddress, desc="Address of request for forwarding"; } external_type(CacheMemory) { bool cacheAvail(Address); Address cacheProbe(Address); void allocate(Address); void deallocate(Address); Entry lookup(Address); void changePermission(Address, AccessPermission); bool isTagPresent(Address); } external_type(TBETable) { TBE lookup(Address); void allocate(Address); void deallocate(Address); bool isPresent(Address); } TBETable TBEs, template_hack=""; CacheMemory L1IcacheMemory, template_hack="", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1I"', abstract_chip_ptr="true"; CacheMemory L1DcacheMemory, template_hack="", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1D"', abstract_chip_ptr="true"; CacheMemory L2cacheMemory, template_hack="", constructor_hack='L2_CACHE_NUM_SETS_BITS,L2_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L2"', abstract_chip_ptr="true"; MessageBuffer mandatoryQueue, ordered="false", abstract_chip_ptr="true"; Sequencer sequencer, abstract_chip_ptr="true", constructor_hack="i"; StoreBuffer storeBuffer, abstract_chip_ptr="true", constructor_hack="i"; int cache_state_to_int(State state); Entry getCacheEntry(Address addr), return_by_ref="yes" { if (L2cacheMemory.isTagPresent(addr)) { return L2cacheMemory[addr]; } else if (L1DcacheMemory.isTagPresent(addr)) { return L1DcacheMemory[addr]; } else { return L1IcacheMemory[addr]; } } void changePermission(Address addr, AccessPermission permission) { if (L2cacheMemory.isTagPresent(addr)) { return L2cacheMemory.changePermission(addr, permission); } else if (L1DcacheMemory.isTagPresent(addr)) { return L1DcacheMemory.changePermission(addr, permission); } else { return L1IcacheMemory.changePermission(addr, permission); } } bool isCacheTagPresent(Address addr) { return (L2cacheMemory.isTagPresent(addr) || L1DcacheMemory.isTagPresent(addr) || L1IcacheMemory.isTagPresent(addr)); } State getState(Address addr) { assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false); assert((L1IcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false); assert((L1DcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false); if(TBEs.isPresent(addr)) { return TBEs[addr].TBEState; } else if (isCacheTagPresent(addr)) { return getCacheEntry(addr).CacheState; } return State:NP; } void setState(Address addr, State state) { assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false); assert((L1IcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false); assert((L1DcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false); if (TBEs.isPresent(addr)) { TBEs[addr].TBEState := state; } if (isCacheTagPresent(addr)) { getCacheEntry(addr).CacheState := state; // Set permission if ((state == State:I) || (state == State:MI_A) || (state == State:II_A)) { changePermission(addr, AccessPermission:Invalid); } else if (state == State:S || state == State:O) { changePermission(addr, AccessPermission:Read_Only); } else if (state == State:M) { changePermission(addr, AccessPermission:Read_Write); } else { changePermission(addr, AccessPermission:Busy); } } } Event mandatory_request_type_to_event(CacheRequestType type) { if (type == CacheRequestType:LD) { return Event:Load; } else if (type == CacheRequestType:IFETCH) { return Event:Ifetch; } else if ((type == CacheRequestType:ST) || (type == CacheRequestType:ATOMIC)) { return Event:Store; } else { error("Invalid CacheRequestType"); } } // ** OUT_PORTS ** out_port(dataNetwork_out, DataMsg, dataFromCache); out_port(addressNetwork_out, AddressMsg, addressFromCache); // ** IN_PORTS ** // Data Network in_port(dataNetwork_in, DataMsg, dataToCache) { if (dataNetwork_in.isReady()) { peek(dataNetwork_in, DataMsg) { trigger(Event:Data, in_msg.Address); } } } // Address Network in_port(addressNetwork_in, AddressMsg, addressToCache) { if (addressNetwork_in.isReady()) { peek(addressNetwork_in, AddressMsg) { if (in_msg.Type == CoherenceRequestType:GETS) { if (in_msg.Requestor == machineID) { trigger(Event:Own_GETS, in_msg.Address); } else { trigger(Event:Other_GETS, in_msg.Address); } } else if (in_msg.Type == CoherenceRequestType:GETX) { if (in_msg.Requestor == machineID) { trigger(Event:Own_GETX, in_msg.Address); } else { trigger(Event:Other_GETX, in_msg.Address); } } else if (in_msg.Type == CoherenceRequestType:GET_INSTR) { if (in_msg.Requestor == machineID) { trigger(Event:Own_GET_INSTR, in_msg.Address); } else { trigger(Event:Other_GET_INSTR, in_msg.Address); } } else if (in_msg.Type == CoherenceRequestType:PUTX) { if (in_msg.Requestor == machineID) { trigger(Event:Own_PUTX, in_msg.Address); } else { trigger(Event:Other_PUTX, in_msg.Address); } } else { error("Unexpected message"); } } } } // Mandatory Queue in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") { if (mandatoryQueue_in.isReady()) { peek(mandatoryQueue_in, CacheMsg) { // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache if (in_msg.Type == CacheRequestType:IFETCH) { // ** INSTRUCTION ACCESS *** // Check to see if it is in the OTHER L1 if (L1DcacheMemory.isTagPresent(in_msg.Address)) { // The block is in the wrong L1, try to write it to the L2 if (L2cacheMemory.cacheAvail(in_msg.Address)) { trigger(Event:L1_to_L2, in_msg.Address); } else { trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(in_msg.Address)); } } else if (L1IcacheMemory.isTagPresent(in_msg.Address)) { // The tag matches for the L1, so the L1 fetches the line. We know it can't be in the L2 due to exclusion trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } else { // not in any L1 if (L1IcacheMemory.cacheAvail(in_msg.Address)) { // L1 does't have the line, but we have space for it in the L1 if (L2cacheMemory.isTagPresent(in_msg.Address)) { // L2 has it (maybe not with the right permissions) trigger(Event:L2_to_L1I, in_msg.Address); } else { // We have room, the L2 doesn't have it, so the L1 fetches the line trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } } else { // No room in the L1, so we need to make room if (L2cacheMemory.cacheAvail(L1IcacheMemory.cacheProbe(in_msg.Address))) { // The L2 has room, so we move the line from the L1 to the L2 trigger(Event:L1_to_L2, L1IcacheMemory.cacheProbe(in_msg.Address)); } else { // The L2 does not have room, so we replace a line from the L2 trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(L1IcacheMemory.cacheProbe(in_msg.Address))); } } } } else { // *** DATA ACCESS *** // Check to see if it is in the OTHER L1 if (L1IcacheMemory.isTagPresent(in_msg.Address)) { // The block is in the wrong L1, try to write it to the L2 if (L2cacheMemory.cacheAvail(in_msg.Address)) { trigger(Event:L1_to_L2, in_msg.Address); } else { trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(in_msg.Address)); } } else if (L1DcacheMemory.isTagPresent(in_msg.Address)) { // The tag matches for the L1, so the L1 fetches the line. We know it can't be in the L2 due to exclusion trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } else { // not in any L1 if (L1DcacheMemory.cacheAvail(in_msg.Address)) { // L1 does't have the line, but we have space for it in the L1 if (L2cacheMemory.isTagPresent(in_msg.Address)) { // L2 has it (maybe not with the right permissions) trigger(Event:L2_to_L1D, in_msg.Address); } else { // We have room, the L2 doesn't have it, so the L1 fetches the line trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } } else { // No room in the L1, so we need to make room if (L2cacheMemory.cacheAvail(L1DcacheMemory.cacheProbe(in_msg.Address))) { // The L2 has room, so we move the line from the L1 to the L2 trigger(Event:L1_to_L2, L1DcacheMemory.cacheProbe(in_msg.Address)); } else { // The L2 does not have room, so we replace a line from the L2 trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(L1DcacheMemory.cacheProbe(in_msg.Address))); } } } } } } } // ACTIONS action(a_allocateTBE, "a", desc="Allocate TBE with Address=B, ForwardID=null, RetryCount=zero, ForwardIDRetryCount=zero, ForwardProgressBit=unset.") { check_allocate(TBEs); TBEs.allocate(address); TBEs[address].ForwardIDs.clear(); // Keep the TBE state consistent with the cache state if (isCacheTagPresent(address)) { TBEs[address].TBEState := getCacheEntry(address).CacheState; } } action(c_allocateL1DCacheBlock, "c", desc="Set L1 D-cache tag equal to tag of block B.") { if (L1DcacheMemory.isTagPresent(address) == false) { L1DcacheMemory.allocate(address); } } action(c_allocateL1ICacheBlock, "c'", desc="Set L1 I-cache tag equal to tag of block B.") { if (L1IcacheMemory.isTagPresent(address) == false) { L1IcacheMemory.allocate(address); } } action(cc_allocateL2CacheBlock, "\c", desc="Set L2 cache tag equal to tag of block B.") { if (L2cacheMemory.isTagPresent(address) == false) { L2cacheMemory.allocate(address); } } action(d_deallocateTBE, "d", desc="Deallocate TBE.") { TBEs.deallocate(address); } action(e_recordForwardingInfo, "e", desc="Record ID of other processor in ForwardID.") { peek(addressNetwork_in, AddressMsg){ TBEs[address].ForwardIDs.add(in_msg.Requestor); TBEs[address].ForwardAddress := in_msg.Address; } } action(f_issueGETS, "f", desc="Issue GETS.") { enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GETS; out_msg.CacheState := cache_state_to_int(getState(address)); out_msg.Requestor := machineID; out_msg.Destination.broadcast(MachineType:L1Cache); out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Control; } } action(g_issueGETX, "g", desc="Issue GETX.") { enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GETX; out_msg.CacheState := cache_state_to_int(getState(address)); out_msg.Requestor := machineID; out_msg.Destination.broadcast(MachineType:L1Cache); out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Control; } } action(h_load_hit, "h", desc="Notify sequencer the load completed.") { DEBUG_EXPR(getCacheEntry(address).DataBlk); sequencer.readCallback(address, getCacheEntry(address).DataBlk); } action(hh_store_hit, "\h", desc="Notify sequencer that store completed.") { DEBUG_EXPR(getCacheEntry(address).DataBlk); sequencer.writeCallback(address, getCacheEntry(address).DataBlk); } action(i_popAddressQueue, "i", desc="Pop incoming address queue.") { addressNetwork_in.dequeue(); } action(j_popDataQueue, "j", desc="Pop incoming data queue.") { dataNetwork_in.dequeue(); } action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") { mandatoryQueue_in.dequeue(); } action(m_deallocateL1CacheBlock, "m", desc="Deallocate L1 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") { if (L1DcacheMemory.isTagPresent(address)) { L1DcacheMemory.deallocate(address); } else { L1IcacheMemory.deallocate(address); } } action(mm_deallocateL2CacheBlock, "\m", desc="Deallocate L2 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") { L2cacheMemory.deallocate(address); } action(n_copyFromL1toL2, "n", desc="Copy data block from L1 (I or D) to L2") { if (L1DcacheMemory.isTagPresent(address)) { L2cacheMemory[address].DataBlk := L1DcacheMemory[address].DataBlk; } else { L2cacheMemory[address].DataBlk := L1IcacheMemory[address].DataBlk; } } action(nn_copyFromL2toL1, "\n", desc="Copy data block from L2 to L1 (I or D)") { if (L1DcacheMemory.isTagPresent(address)) { L1DcacheMemory[address].DataBlk := L2cacheMemory[address].DataBlk; } else { L1IcacheMemory[address].DataBlk := L2cacheMemory[address].DataBlk; } } action(o_cacheToForward, "o", desc="Send data from the cache to the processor indicated by ForwardIDs.") { peek(dataNetwork_in, DataMsg){ // This has a CACHE_RESPONSE_LATENCY latency because we want to avoid the // timing strangeness that can occur if requests that source the // data from the TBE are faster than data sourced from the cache enqueue(dataNetwork_out, DataMsg, latency="CACHE_RESPONSE_LATENCY"){ out_msg.Address := TBEs[address].ForwardAddress; out_msg.Sender := machineID; out_msg.DataBlk := getCacheEntry(address).DataBlk; out_msg.Destination := TBEs[address].ForwardIDs; out_msg.DestMachine := MachineType:L1Cache; out_msg.MessageSize := MessageSizeType:Data; } } } action(p_issuePUTX, "p", desc="Issue PUTX.") { enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:PUTX; out_msg.CacheState := cache_state_to_int(getState(address)); out_msg.Requestor := machineID; out_msg.Destination.add(map_Address_to_Directory(address)); // To memory out_msg.Destination.add(machineID); // Back to us out_msg.DataBlk := getCacheEntry(address).DataBlk; out_msg.MessageSize := MessageSizeType:Data; } } action(q_writeDataFromCacheToTBE, "q", desc="Write data from the cache into the TBE.") { TBEs[address].DataBlk := getCacheEntry(address).DataBlk; DEBUG_EXPR(TBEs[address].DataBlk); } action(r_cacheToRequestor, "r", desc="Send data from the cache to the requestor") { peek(addressNetwork_in, AddressMsg) { enqueue(dataNetwork_out, DataMsg, latency="CACHE_RESPONSE_LATENCY") { out_msg.Address := address; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DestMachine := MachineType:L1Cache; out_msg.DataBlk := getCacheEntry(address).DataBlk; out_msg.MessageSize := MessageSizeType:Data; } DEBUG_EXPR(getCacheEntry(address).DataBlk); } } action(s_saveDataInTBE, "s", desc="Save data in data field of TBE.") { peek(dataNetwork_in, DataMsg) { TBEs[address].DataBlk := in_msg.DataBlk; DEBUG_EXPR(TBEs[address].DataBlk); } } action(t_issueGET_INSTR, "t", desc="Issue GETInstr.") { enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GET_INSTR; out_msg.CacheState := cache_state_to_int(getState(address)); out_msg.Requestor := machineID; out_msg.Destination.broadcast(MachineType:L1Cache); out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Control; } } action(w_writeDataFromTBEToCache, "w", desc="Write data from the TBE into the cache.") { getCacheEntry(address).DataBlk := TBEs[address].DataBlk; DEBUG_EXPR(getCacheEntry(address).DataBlk); } action(x_profileMiss, "x", desc="Profile the demand miss") { peek(mandatoryQueue_in, CacheMsg) { profile_miss(in_msg, id); } } action(y_tbeToReq, "y", desc="Send data from the TBE to the requestor.") { peek(addressNetwork_in, AddressMsg) { enqueue(dataNetwork_out, DataMsg, latency="CACHE_RESPONSE_LATENCY") { // Either this or the PutX should have a real latency out_msg.Address := address; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DestMachine := MachineType:L1Cache; out_msg.DataBlk := TBEs[address].DataBlk; out_msg.MessageSize := MessageSizeType:Data; } } } // action(z_stall, "z", desc="Cannot be handled right now.") { // Special name recognized as do nothing case // } action(zz_recycleMandatoryQueue, "\z", desc="Send the head of the mandatory queue to the back of the queue.") { mandatoryQueue_in.recycle(); } // TRANSITIONS // Transitions from Idle transition({NP, I}, Load, IS_AD) { f_issueGETS; c_allocateL1DCacheBlock; a_allocateTBE; x_profileMiss; k_popMandatoryQueue; } transition({NP, I}, Ifetch, IS_AD) { t_issueGET_INSTR; c_allocateL1ICacheBlock; a_allocateTBE; x_profileMiss; k_popMandatoryQueue; } transition({NP, I}, Store, IM_AD) { g_issueGETX; c_allocateL1DCacheBlock; a_allocateTBE; x_profileMiss; k_popMandatoryQueue; } transition(I, L2_Replacement) { mm_deallocateL2CacheBlock; } transition({NP, I}, { Other_GETS, Other_GET_INSTR, Other_GETX } ) { i_popAddressQueue; } // Transitions from Shared transition(S, {Load,Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(S, Store, SM_AD) { g_issueGETX; a_allocateTBE; x_profileMiss; k_popMandatoryQueue; } transition(S, L2_Replacement, I) { mm_deallocateL2CacheBlock; } transition(S, {Other_GETS, Other_GET_INSTR}) { i_popAddressQueue; } transition(S, Other_GETX, I) { i_popAddressQueue; } // Transitions from Owned transition(O, {Load,Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(O, Store, OM_A){ g_issueGETX; a_allocateTBE; x_profileMiss; k_popMandatoryQueue; } transition(O, L2_Replacement, OI_A) { p_issuePUTX; a_allocateTBE; q_writeDataFromCacheToTBE;// the cache line is now empty mm_deallocateL2CacheBlock; } transition(O, {Other_GETS,Other_GET_INSTR}) { r_cacheToRequestor; i_popAddressQueue; } transition(O, Other_GETX, I) { r_cacheToRequestor; i_popAddressQueue; } // Transitions from Modified transition(M, {Load,Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(M, Store) { hh_store_hit; k_popMandatoryQueue; } transition(M, L2_Replacement, MI_A) { p_issuePUTX; a_allocateTBE; q_writeDataFromCacheToTBE;// the cache line is now empty mm_deallocateL2CacheBlock; } transition(M, {Other_GETS,Other_GET_INSTR}, O) { r_cacheToRequestor; i_popAddressQueue; } transition(M, Other_GETX, I) { r_cacheToRequestor; i_popAddressQueue; } // Transitions moving data between the L1 and L2 caches transition({I, S, O, M}, L1_to_L2) { cc_allocateL2CacheBlock; n_copyFromL1toL2; // Not really needed for state I m_deallocateL1CacheBlock; } transition({I, S, O, M}, L2_to_L1D) { c_allocateL1DCacheBlock; nn_copyFromL2toL1; // Not really needed for state I mm_deallocateL2CacheBlock; } transition({I, S, O, M}, L2_to_L1I) { c_allocateL1ICacheBlock; nn_copyFromL2toL1; // Not really needed for state I mm_deallocateL2CacheBlock; } // Transitions for Load/Store/Replacement from transient states transition({IS_AD, IM_AD, IS_A, IM_A, SM_AD, OM_A, SM_A, IS_D, IS_D_I, IM_D, IM_D_O, IM_D_I, IM_D_OI, SM_D, SM_D_O}, {Load, Ifetch, Store, L2_Replacement, L1_to_L2, L2_to_L1D, L2_to_L1I}) { zz_recycleMandatoryQueue; } transition({MI_A, OI_A, II_A}, {Load, Ifetch, Store, L2_Replacement, L1_to_L2, L2_to_L1D, L2_to_L1I}) { zz_recycleMandatoryQueue; } // Always ignore PUTXs which we are not the owner of transition({NP, I, S, O, M, IS_AD, IM_AD, SM_AD, OM_A, IS_A, IM_A, SM_A, MI_A, OI_A, II_A, IS_D, IS_D_I, IM_D, IM_D_O, IM_D_I, IM_D_OI, SM_D, SM_D_O }, Other_PUTX) { i_popAddressQueue; } // transitions from IS_AD transition(IS_AD, {Own_GETS,Own_GET_INSTR}, IS_D) { i_popAddressQueue; } transition(IS_AD, {Other_GETS, Other_GET_INSTR, Other_GETX}) { i_popAddressQueue; } transition(IS_AD, Data, IS_A) { s_saveDataInTBE; j_popDataQueue; } // Transitions from IM_AD transition(IM_AD, Own_GETX, IM_D) { i_popAddressQueue; } transition(IM_AD, {Other_GETS, Other_GET_INSTR, Other_GETX}) { i_popAddressQueue; } transition(IM_AD, Data, IM_A) { s_saveDataInTBE; j_popDataQueue; } // Transitions from OM_A transition(OM_A, Own_GETX, M){ hh_store_hit; d_deallocateTBE; i_popAddressQueue; } transition(OM_A, {Other_GETS, Other_GET_INSTR}){ r_cacheToRequestor; i_popAddressQueue; } transition(OM_A, Other_GETX, IM_AD){ r_cacheToRequestor; i_popAddressQueue; } transition(OM_A, Data, IM_A) { // if we get data, we know we're going to lose block before we see own GETX s_saveDataInTBE; j_popDataQueue; } // Transitions from SM_AD transition(SM_AD, Own_GETX, SM_D) { i_popAddressQueue; } transition(SM_AD, {Other_GETS,Other_GET_INSTR}) { i_popAddressQueue; } transition(SM_AD, Other_GETX, IM_AD) { i_popAddressQueue; } transition(SM_AD, Data, SM_A) { s_saveDataInTBE; j_popDataQueue; } // Transitions from IS_A transition(IS_A, {Own_GETS,Own_GET_INSTR}, S) { w_writeDataFromTBEToCache; h_load_hit; d_deallocateTBE; i_popAddressQueue; } transition(IS_A, {Other_GETS, Other_GET_INSTR, Other_GETX}) { i_popAddressQueue; } // Transitions from IM_A transition(IM_A, Own_GETX, M) { w_writeDataFromTBEToCache; hh_store_hit; d_deallocateTBE; i_popAddressQueue; } transition(IM_A, {Other_GETS, Other_GET_INSTR, Other_GETX}) { i_popAddressQueue; } // Transitions from SM_A transition(SM_A, Own_GETX, M) { w_writeDataFromTBEToCache; hh_store_hit; d_deallocateTBE; i_popAddressQueue; } transition(SM_A, {Other_GETS,Other_GET_INSTR}) { i_popAddressQueue; } transition(SM_A, Other_GETX, IM_A) { i_popAddressQueue; } // Transitions from MI_A transition(MI_A, Own_PUTX, I) { d_deallocateTBE; i_popAddressQueue; } transition(MI_A, {Other_GETS, Other_GET_INSTR}) { y_tbeToReq; i_popAddressQueue; } transition(MI_A, Other_GETX, II_A) { y_tbeToReq; i_popAddressQueue; } // Transitions from OI_A transition(OI_A, Own_PUTX, I) { d_deallocateTBE; i_popAddressQueue; } transition(OI_A, {Other_GETS, Other_GET_INSTR}) { y_tbeToReq; i_popAddressQueue; } transition(OI_A, Other_GETX, II_A) { y_tbeToReq; i_popAddressQueue; } // Transitions from II_A transition(II_A, Own_PUTX, I) { d_deallocateTBE; i_popAddressQueue; } transition(II_A, {Other_GETS, Other_GET_INSTR, Other_GETX}) { i_popAddressQueue; } // Transitions from IS_D, IS_D_I transition({IS_D, IS_D_I}, {Other_GETS,Other_GET_INSTR}) { i_popAddressQueue; } transition(IS_D, Other_GETX, IS_D_I) { i_popAddressQueue; } transition(IS_D_I, Other_GETX) { i_popAddressQueue; } transition(IS_D, Data, S) { s_saveDataInTBE; w_writeDataFromTBEToCache; h_load_hit; d_deallocateTBE; j_popDataQueue; } transition(IS_D_I, Data, I) { s_saveDataInTBE; w_writeDataFromTBEToCache; h_load_hit; d_deallocateTBE; j_popDataQueue; } // Transitions from IM_D, IM_D_O, IM_D_I, IM_D_OI transition( IM_D, {Other_GETS,Other_GET_INSTR}, IM_D_O ) { e_recordForwardingInfo; i_popAddressQueue; } transition( IM_D, Other_GETX, IM_D_I ) { e_recordForwardingInfo; i_popAddressQueue; } transition(IM_D_O, {Other_GETS,Other_GET_INSTR} ) { e_recordForwardingInfo; i_popAddressQueue; } transition(IM_D_O, Other_GETX, IM_D_OI) { e_recordForwardingInfo; i_popAddressQueue; } transition( {IM_D_I, IM_D_OI}, {Other_GETS, Other_GET_INSTR, Other_GETX} ) { i_popAddressQueue; } transition(IM_D, Data, M) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; d_deallocateTBE; j_popDataQueue; } transition(IM_D_O, Data, O) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; o_cacheToForward; d_deallocateTBE; j_popDataQueue; } transition(IM_D_I, Data, I) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; o_cacheToForward; d_deallocateTBE; j_popDataQueue; } transition(IM_D_OI, Data, I) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; o_cacheToForward; d_deallocateTBE; j_popDataQueue; } // Transitions for SM_D, SM_D_O transition(SM_D, {Other_GETS,Other_GET_INSTR}, SM_D_O) { e_recordForwardingInfo; i_popAddressQueue; } transition(SM_D, Other_GETX, IM_D_I) { e_recordForwardingInfo; i_popAddressQueue; } transition(SM_D_O, {Other_GETS,Other_GET_INSTR}) { e_recordForwardingInfo; i_popAddressQueue; } transition(SM_D_O, Other_GETX, IM_D_OI) { e_recordForwardingInfo; i_popAddressQueue; } transition(SM_D, Data, M) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; d_deallocateTBE; j_popDataQueue; } transition(SM_D_O, Data, O) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; o_cacheToForward; d_deallocateTBE; j_popDataQueue; } }