/* * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * $Id$ */ machine(L1Cache, "MOSI Broadcast Optimized") { MessageBuffer addressFromCache, network="To", virtual_network="0", ordered="true"; MessageBuffer dataFromCache, network="To", virtual_network="1", ordered="false"; MessageBuffer addressToCache, network="From", virtual_network="0", ordered="true"; MessageBuffer dataToCache, network="From", virtual_network="1", ordered="false"; // STATES enumeration(State, desc="Cache states", default="L1Cache_State_I") { NP, desc="Not Present"; I, desc="Idle"; S, desc="Shared"; O, desc="Owned"; M, desc="Modified", format="!b"; IS_AD, "IS^AD", desc="idle, issued GETS, have not seen GETS or data yet"; IM_AD, "IM^AD", desc="idle, issued GETX, have not seen GETX or data yet"; SM_AD, "SM^AD",desc="shared, issued GETX, have not seen GETX or data yet"; OM_A, "OM^A",desc="owned, issued GETX, have not seen GETX yet", format="!b"; IS_A, "IS^A",desc="idle, issued GETS, have not seen GETS, have seen data"; IM_A, "IM^A",desc="idle, issued GETX, have not seen GETX, have seen data"; SM_A, "SM^A",desc="shared, issued GETX, have not seen GETX, have seen data", format="!b"; MI_A, "MI^A", desc="modified, issued PUTX, have not seen PUTX yet"; OI_A, "OI^A", desc="owned, issued PUTX, have not seen PUTX yet"; II_A, "II^A", desc="modified, issued PUTX, have not seen PUTX, then saw other GETX", format="!b"; IS_D, "IS^D", desc="idle, issued GETS, have seen GETS, have not seen data yet"; IS_D_I, "IS^D^I", desc="idle, issued GETS, have seen GETS, have not seen data, then saw other GETX"; IM_D, "IM^D", desc="idle, issued GETX, have seen GETX, have not seen data yet"; IM_D_O, "IM^D^O", desc="idle, issued GETX, have seen GETX, have not seen data yet, then saw other GETS"; IM_D_I, "IM^D^I", desc="idle, issued GETX, have seen GETX, have not seen data yet, then saw other GETX"; IM_D_OI, "IM^D^OI", desc="idle, issued GETX, have seen GETX, have not seen data yet, then saw other GETS, then saw other GETX"; SM_D, "SM^D", desc="shared, issued GETX, have seen GETX, have not seen data yet"; SM_D_O, "SM^D^O", desc="shared, issued GETX, have seen GETX, have not seen data yet, then saw other GETS"; } // ** EVENTS ** enumeration(Event, desc="Cache events") { // From processor Load, desc="Load request from the processor"; Ifetch, desc="I-fetch request from the processor"; Store, desc="Store request from the processor"; Replacement, desc="Replacement"; Load_prefetch, desc="Read only prefetch"; Store_prefetch, desc="Read write prefetch", format="!r"; // From Address network Own_GETS, desc="Occurs when we observe our own GETS request in the global order"; Own_GET_INSTR, desc="Occurs when we observe our own GETInstr request in the global order"; Own_GETX, desc="Occurs when we observe our own GETX request in the global order"; Own_PUTX, desc="Occurs when we observe our own PUTX request in the global order", format="!r"; Other_GETS, desc="Occurs when we observe a GETS request from another processor"; Other_GET_INSTR, desc="Occurs when we observe a GETInstr request from another processor"; Other_GETX, desc="Occurs when we observe a GETX request from another processor"; Other_PUTX, desc="Occurs when we observe a PUTX request from another processor", format="!r"; // From Data network Data, desc="Data for this block from the data network"; } // TYPES // CacheEntry structure(Entry, desc="...", interface="AbstractCacheEntry") { State CacheState, desc="cache state"; DataBlock DataBlk, desc="data for the block"; } // TBE fields structure(TBE, desc="...") { Address Address, desc="Physical address for this TBE"; State TBEState, desc="Transient state"; DataBlock DataBlk, desc="Buffer for the data block"; NetDest ForwardIDs, desc="IDs of the processors to forward the block"; Address ForwardAddress, desc="Address of request for forwarding"; bool isPrefetch, desc="Set if this request is a prefetch"; } external_type(CacheMemory) { bool cacheAvail(Address); Address cacheProbe(Address); void allocate(Address); void deallocate(Address); Entry lookup(Address); void changePermission(Address, AccessPermission); bool isTagPresent(Address); } external_type(TBETable) { TBE lookup(Address); void allocate(Address); void deallocate(Address); bool isPresent(Address); } MessageBuffer mandatoryQueue, ordered="false", abstract_chip_ptr="true"; MessageBuffer optionalQueue, ordered="true", abstract_chip_ptr="true"; Sequencer sequencer, abstract_chip_ptr="true", constructor_hack="i"; StoreBuffer storeBuffer, abstract_chip_ptr="true", constructor_hack="i"; TBETable TBEs, template_hack=""; CacheMemory cacheMemory, template_hack="", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_unified"', abstract_chip_ptr="true"; int cache_state_to_int(State state); State getState(Address addr) { if(TBEs.isPresent(addr)) { return TBEs[addr].TBEState; } else if (cacheMemory.isTagPresent(addr)) { return cacheMemory[addr].CacheState; } return State:NP; } void setState(Address addr, State state) { if (TBEs.isPresent(addr)) { TBEs[addr].TBEState := state; } if (cacheMemory.isTagPresent(addr)) { cacheMemory[addr].CacheState := state; // Set permission if ((state == State:I) || (state == State:MI_A) || (state == State:II_A)) { cacheMemory.changePermission(addr, AccessPermission:Invalid); } else if (state == State:S || state == State:O) { cacheMemory.changePermission(addr, AccessPermission:Read_Only); } else if (state == State:M) { cacheMemory.changePermission(addr, AccessPermission:Read_Write); } else { cacheMemory.changePermission(addr, AccessPermission:Busy); } } } // ** OUT_PORTS ** out_port(dataNetwork_out, DataMsg, dataFromCache); out_port(addressNetwork_out, AddressMsg, addressFromCache); // ** IN_PORTS ** // Data Network in_port(dataNetwork_in, DataMsg, dataToCache) { if (dataNetwork_in.isReady()) { peek(dataNetwork_in, DataMsg) { trigger(Event:Data, in_msg.Address); } } } // Address Network in_port(addressNetwork_in, AddressMsg, addressToCache) { if (addressNetwork_in.isReady()) { peek(addressNetwork_in, AddressMsg) { if (in_msg.Type == CoherenceRequestType:GETS) { if (in_msg.Requestor == machineID) { trigger(Event:Own_GETS, in_msg.Address); } else { trigger(Event:Other_GETS, in_msg.Address); } } else if (in_msg.Type == CoherenceRequestType:GETX) { if (in_msg.Requestor == machineID) { trigger(Event:Own_GETX, in_msg.Address); } else { trigger(Event:Other_GETX, in_msg.Address); } } else if (in_msg.Type == CoherenceRequestType:GET_INSTR) { if (in_msg.Requestor == machineID) { trigger(Event:Own_GET_INSTR, in_msg.Address); } else { trigger(Event:Other_GET_INSTR, in_msg.Address); } } else if (in_msg.Type == CoherenceRequestType:PUTX) { if (in_msg.Requestor == machineID) { trigger(Event:Own_PUTX, in_msg.Address); } else { trigger(Event:Other_PUTX, in_msg.Address); } } else { error("Unexpected message"); } } } } // Mandatory Queue in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") { if (mandatoryQueue_in.isReady()) { peek(mandatoryQueue_in, CacheMsg) { if (cacheMemory.cacheAvail(in_msg.Address) == false) { trigger(Event:Replacement, cacheMemory.cacheProbe(in_msg.Address)); } else { if (in_msg.Type == CacheRequestType:LD) { trigger(Event:Load, in_msg.Address); } else if (in_msg.Type == CacheRequestType:IFETCH) { trigger(Event:Ifetch, in_msg.Address); } else if ((in_msg.Type == CacheRequestType:ST) || (in_msg.Type == CacheRequestType:ATOMIC)) { trigger(Event:Store, in_msg.Address); } else { error("Invalid CacheRequestType"); } } } } } // Optional Queue in_port(optionalQueue_in, CacheMsg, optionalQueue, desc="...") { if (optionalQueue_in.isReady()) { peek(optionalQueue_in, CacheMsg) { if (cacheMemory.cacheAvail(in_msg.Address) == false) { trigger(Event:Replacement, cacheMemory.cacheProbe(in_msg.Address)); } else { if ((in_msg.Type == CacheRequestType:LD) || (in_msg.Type == CacheRequestType:IFETCH)) { trigger(Event:Load_prefetch, in_msg.Address); } else if ((in_msg.Type == CacheRequestType:ST) || (in_msg.Type == CacheRequestType:ATOMIC)) { trigger(Event:Store_prefetch, in_msg.Address); } else { error("Invalid CacheRequestType"); } } } } } // ACTIONS action(a_allocateTBE, "a", desc="Allocate TBE with Address=B, ForwardID=null, RetryCount=zero, ForwardIDRetryCount=zero, ForwardProgressBit=unset.") { check_allocate(TBEs); TBEs.allocate(address); TBEs[address].isPrefetch := false; TBEs[address].ForwardIDs.clear(); // Keep the TBE state consistent with the cache state if (cacheMemory.isTagPresent(address)) { TBEs[address].TBEState := cacheMemory[address].CacheState; } } action(b_setPrefetchBit, "b", desc="Set prefetch bit in TBE.") { TBEs[address].isPrefetch := true; } action(c_allocateCacheBlock, "c", desc="Set cache tag equal to tag of block B.") { if (cacheMemory.isTagPresent(address) == false) { cacheMemory.allocate(address); } } action(d_deallocateTBE, "d", desc="Deallocate TBE.") { TBEs.deallocate(address); } action(e_recordForwardingInfo, "e", desc="Record ID of other processor in ForwardID.") { peek(addressNetwork_in, AddressMsg){ TBEs[address].ForwardIDs.add(in_msg.Requestor); TBEs[address].ForwardAddress := in_msg.Address; } } action(f_issueGETS, "f", desc="Issue GETS.") { enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GETS; out_msg.CacheState := cache_state_to_int(getState(address)); out_msg.Requestor := machineID; out_msg.Destination.broadcast(MachineType:L1Cache); out_msg.Destination.add(map_Address_to_Directory(address)); // To memory out_msg.MessageSize := MessageSizeType:Control; } } action(g_issueGETX, "g", desc="Issue GETX.") { enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GETX; out_msg.CacheState := cache_state_to_int(getState(address)); out_msg.Requestor := machineID; out_msg.Destination.broadcast(MachineType:L1Cache); out_msg.Destination.add(map_Address_to_Directory(address)); // To memory out_msg.MessageSize := MessageSizeType:Control; } } action(h_load_hit, "h", desc="If not prefetch, notify sequencer the load completed.") { DEBUG_EXPR(cacheMemory[address].DataBlk); if((TBEs.isPresent(address) == false) || (TBEs[address].isPrefetch == false)) { // Non-prefetch sequencer.readCallback(address, cacheMemory[address].DataBlk); } else { // Prefetch - don't call back } } action(hh_store_hit, "\h", desc="If not prefetch, notify sequencer that store completed.") { DEBUG_EXPR(cacheMemory[address].DataBlk); if((TBEs.isPresent(address) == false) || (TBEs[address].isPrefetch == false)) { // Non-prefetch sequencer.writeCallback(address, cacheMemory[address].DataBlk); } else { // Prefetch - don't call back } } action(i_popAddressQueue, "i", desc="Pop incoming address queue.") { addressNetwork_in.dequeue(); } action(j_popDataQueue, "j", desc="Pop incoming data queue.") { dataNetwork_in.dequeue(); } action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") { mandatoryQueue_in.dequeue(); } action(l_popOptionalQueue, "l", desc="Pop optional queue.") { optionalQueue_in.dequeue(); } action(o_cacheToForward, "o", desc="Send data from the cache to the processor indicated by ForwardIDs.") { peek(dataNetwork_in, DataMsg){ // This has a CACHE_RESPONSE_LATENCY latency because we want to avoid the // timing strangeness that can occur if requests that source the // data from the TBE are faster than data sourced from the cache enqueue(dataNetwork_out, DataMsg, latency="CACHE_RESPONSE_LATENCY"){ out_msg.Address := TBEs[address].ForwardAddress; out_msg.Sender := machineID; out_msg.DataBlk := cacheMemory[address].DataBlk; out_msg.Destination := TBEs[address].ForwardIDs; out_msg.DestMachine := MachineType:L1Cache; out_msg.MessageSize := MessageSizeType:Data; } } } action(p_issuePUTX, "p", desc="Issue PUTX.") { enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:PUTX; out_msg.CacheState := cache_state_to_int(getState(address)); out_msg.Requestor := machineID; out_msg.Destination.add(map_Address_to_Directory(address)); // To memory out_msg.Destination.add(machineID); // Back to us out_msg.DataBlk := cacheMemory[address].DataBlk; out_msg.MessageSize := MessageSizeType:Data; } } action(q_writeDataFromCacheToTBE, "q", desc="Write data from the cache into the TBE.") { TBEs[address].DataBlk := cacheMemory[address].DataBlk; DEBUG_EXPR(TBEs[address].DataBlk); } action(r_cacheToRequestor, "r", desc="Send data from the cache to the requestor") { peek(addressNetwork_in, AddressMsg) { enqueue(dataNetwork_out, DataMsg, latency="CACHE_RESPONSE_LATENCY") { out_msg.Address := address; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DestMachine := MachineType:L1Cache; out_msg.DataBlk := cacheMemory[address].DataBlk; out_msg.MessageSize := MessageSizeType:Data; } DEBUG_EXPR(cacheMemory[address].DataBlk); } } action(s_saveDataInTBE, "s", desc="Save data in data field of TBE.") { peek(dataNetwork_in, DataMsg) { TBEs[address].DataBlk := in_msg.DataBlk; DEBUG_EXPR(TBEs[address].DataBlk); } } action(t_issueGET_INSTR, "t", desc="Issue GETInstr.") { enqueue(addressNetwork_out, AddressMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GET_INSTR; out_msg.CacheState := cache_state_to_int(getState(address)); out_msg.Requestor := machineID; out_msg.Destination.broadcast(MachineType:L1Cache); out_msg.Destination.add(map_Address_to_Directory(address)); // To memory out_msg.MessageSize := MessageSizeType:Control; } } action(w_writeDataFromTBEToCache, "w", desc="Write data from the TBE into the cache.") { cacheMemory[address].DataBlk := TBEs[address].DataBlk; DEBUG_EXPR(cacheMemory[address].DataBlk); } action(y_tbeToReq, "y", desc="Send data from the TBE to the requestor.") { peek(addressNetwork_in, AddressMsg) { enqueue(dataNetwork_out, DataMsg, latency="CACHE_RESPONSE_LATENCY") { // Either this or the PutX should have a real latency out_msg.Address := address; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DestMachine := MachineType:L1Cache; out_msg.DataBlk := TBEs[address].DataBlk; out_msg.MessageSize := MessageSizeType:Data; } } } action(ff_deallocateCacheBlock, "\f", desc="Deallocate cache block. Sets the cache to invalid, allowing a replacement in parallel with a fetch.") { cacheMemory.deallocate(address); } action(z_stall, "z", desc="Cannot be handled right now.") { // Special name recognized as do nothing case } // TRANSITIONS // Transitions from Idle transition({NP, I}, Load, IS_AD) { f_issueGETS; c_allocateCacheBlock; a_allocateTBE; k_popMandatoryQueue; } transition({NP, I}, Ifetch, IS_AD) { t_issueGET_INSTR; c_allocateCacheBlock; a_allocateTBE; k_popMandatoryQueue; } transition({NP, I}, Load_prefetch, IS_AD) { f_issueGETS; c_allocateCacheBlock; a_allocateTBE; b_setPrefetchBit; l_popOptionalQueue; } transition({NP, I}, Store, IM_AD) { g_issueGETX; c_allocateCacheBlock; a_allocateTBE; k_popMandatoryQueue; } transition({NP, I}, Store_prefetch, IM_AD) { g_issueGETX; c_allocateCacheBlock; a_allocateTBE; b_setPrefetchBit; l_popOptionalQueue; } transition(I, Replacement) { ff_deallocateCacheBlock; // the cache line is now in NotPresent } transition({NP, I}, { Other_GETS, Other_GET_INSTR, Other_GETX } ) { i_popAddressQueue; } // Transitions from Shared transition(S, {Load,Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(S, Load_prefetch) { l_popOptionalQueue; } transition(S, Store, SM_AD) { g_issueGETX; a_allocateTBE; k_popMandatoryQueue; } transition(S, Store_prefetch, IM_AD) { g_issueGETX; a_allocateTBE; b_setPrefetchBit; // Must be after allocate TBE l_popOptionalQueue; } transition(S, Replacement, I) { ff_deallocateCacheBlock; // the cache line is now in NotPresent } transition(S, {Other_GETS, Other_GET_INSTR}) { i_popAddressQueue; } transition(S, Other_GETX, I) { i_popAddressQueue; } // Transitions from Owned transition(O, {Load,Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(O, Store, OM_A){ g_issueGETX; a_allocateTBE; k_popMandatoryQueue; } transition(O, Load_prefetch) { l_popOptionalQueue; } transition(O, Store_prefetch, OM_A) { g_issueGETX; a_allocateTBE; b_setPrefetchBit; l_popOptionalQueue; } transition(O, Replacement, OI_A) { p_issuePUTX; a_allocateTBE; q_writeDataFromCacheToTBE;// the cache line is now empty ff_deallocateCacheBlock; // the cache line is now in NotPresent } transition(O, {Other_GETS,Other_GET_INSTR}) { r_cacheToRequestor; i_popAddressQueue; } transition(O, Other_GETX, I) { r_cacheToRequestor; i_popAddressQueue; } // Transitions from Modified transition(M, {Load,Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(M, Store) { hh_store_hit; k_popMandatoryQueue; } transition(M, {Load_prefetch,Store_prefetch}) { l_popOptionalQueue; } transition(M, Replacement, MI_A) { p_issuePUTX; a_allocateTBE; q_writeDataFromCacheToTBE;// the cache line is now empty ff_deallocateCacheBlock; // the cache line is now in NotPresent } transition(M, {Other_GETS,Other_GET_INSTR}, O) { r_cacheToRequestor; i_popAddressQueue; } transition(M, Other_GETX, I) { r_cacheToRequestor; i_popAddressQueue; } // Transitions for Load/Store/Replacement from transient states transition({IS_AD, IM_AD, IS_A, IM_A, SM_AD, OM_A, SM_A, IS_D, IS_D_I, IM_D, IM_D_O, IM_D_I, IM_D_OI, SM_D, SM_D_O}, {Load, Ifetch, Store, Replacement}) { z_stall; } transition({IS_AD, IM_AD, IS_A, IM_A, SM_AD, OM_A, SM_A, IS_D, IM_D, IM_D_O, SM_D, SM_D_O}, Load_prefetch) { l_popOptionalQueue; } transition({IS_D_I, IM_D_I, IM_D_OI}, Load_prefetch) { z_stall; } transition({IM_AD, SM_AD, OM_A, IM_A, SM_A, IM_D, SM_D}, Store_prefetch) { l_popOptionalQueue; } transition({IS_AD, IS_A, IS_D, IS_D_I, IM_D_O, IM_D_I, IM_D_OI, SM_D_O}, Store_prefetch) { z_stall; } transition({MI_A, OI_A, II_A}, {Load, Ifetch, Store, Load_prefetch, Store_prefetch, Replacement}) { z_stall; } // Always ignore PUTXs which we are not the owner of transition({NP, I, S, O, M, IS_AD, IM_AD, SM_AD, OM_A, IS_A, IM_A, SM_A, MI_A, OI_A, II_A, IS_D, IS_D_I, IM_D, IM_D_O, IM_D_I, IM_D_OI, SM_D, SM_D_O }, Other_PUTX) { i_popAddressQueue; } // transitions from IS_AD transition(IS_AD, {Own_GETS,Own_GET_INSTR}, IS_D) { i_popAddressQueue; } transition(IS_AD, {Other_GETS, Other_GET_INSTR, Other_GETX}) { i_popAddressQueue; } transition(IS_AD, Data, IS_A) { s_saveDataInTBE; j_popDataQueue; } // Transitions from IM_AD transition(IM_AD, Own_GETX, IM_D) { i_popAddressQueue; } transition(IM_AD, {Other_GETS, Other_GET_INSTR, Other_GETX}) { i_popAddressQueue; } transition(IM_AD, Data, IM_A) { s_saveDataInTBE; j_popDataQueue; } // Transitions from OM_A transition(OM_A, Own_GETX, M){ hh_store_hit; d_deallocateTBE; i_popAddressQueue; } transition(OM_A, {Other_GETS, Other_GET_INSTR}){ r_cacheToRequestor; i_popAddressQueue; } transition(OM_A, Other_GETX, IM_AD){ r_cacheToRequestor; i_popAddressQueue; } transition(OM_A, Data, IM_A) { // if we get data, we know we're going to lose block before we see own GETX s_saveDataInTBE; j_popDataQueue; } // Transitions from SM_AD transition(SM_AD, Own_GETX, SM_D) { i_popAddressQueue; } transition(SM_AD, {Other_GETS,Other_GET_INSTR}) { i_popAddressQueue; } transition(SM_AD, Other_GETX, IM_AD) { i_popAddressQueue; } transition(SM_AD, Data, SM_A) { s_saveDataInTBE; j_popDataQueue; } // Transitions from IS_A transition(IS_A, {Own_GETS,Own_GET_INSTR}, S) { w_writeDataFromTBEToCache; h_load_hit; d_deallocateTBE; i_popAddressQueue; } transition(IS_A, {Other_GETS, Other_GET_INSTR, Other_GETX}) { i_popAddressQueue; } // Transitions from IM_A transition(IM_A, Own_GETX, M) { w_writeDataFromTBEToCache; hh_store_hit; d_deallocateTBE; i_popAddressQueue; } transition(IM_A, {Other_GETS, Other_GET_INSTR, Other_GETX}) { i_popAddressQueue; } // Transitions from SM_A transition(SM_A, Own_GETX, M) { w_writeDataFromTBEToCache; hh_store_hit; d_deallocateTBE; i_popAddressQueue; } transition(SM_A, {Other_GETS,Other_GET_INSTR}) { i_popAddressQueue; } transition(SM_A, Other_GETX, IM_A) { i_popAddressQueue; } // Transitions from MI_A transition(MI_A, Own_PUTX, I) { d_deallocateTBE; i_popAddressQueue; } transition(MI_A, {Other_GETS, Other_GET_INSTR}) { y_tbeToReq; i_popAddressQueue; } transition(MI_A, Other_GETX, II_A) { y_tbeToReq; i_popAddressQueue; } // Transitions from OI_A transition(OI_A, Own_PUTX, I) { d_deallocateTBE; i_popAddressQueue; } transition(OI_A, {Other_GETS, Other_GET_INSTR}) { y_tbeToReq; i_popAddressQueue; } transition(OI_A, Other_GETX, II_A) { y_tbeToReq; i_popAddressQueue; } // Transitions from II_A transition(II_A, Own_PUTX, I) { d_deallocateTBE; i_popAddressQueue; } transition(II_A, {Other_GETS, Other_GET_INSTR, Other_GETX}) { i_popAddressQueue; } // Transitions from IS_D, IS_D_I transition({IS_D, IS_D_I}, {Other_GETS,Other_GET_INSTR}) { i_popAddressQueue; } transition(IS_D, Other_GETX, IS_D_I) { i_popAddressQueue; } transition(IS_D_I, Other_GETX) { i_popAddressQueue; } transition(IS_D, Data, S) { s_saveDataInTBE; w_writeDataFromTBEToCache; h_load_hit; d_deallocateTBE; j_popDataQueue; } transition(IS_D_I, Data, I) { s_saveDataInTBE; w_writeDataFromTBEToCache; h_load_hit; d_deallocateTBE; j_popDataQueue; } // Transitions from IM_D, IM_D_O, IM_D_I, IM_D_OI transition( IM_D, {Other_GETS,Other_GET_INSTR}, IM_D_O ) { e_recordForwardingInfo; i_popAddressQueue; } transition( IM_D, Other_GETX, IM_D_I ) { e_recordForwardingInfo; i_popAddressQueue; } transition(IM_D_O, {Other_GETS,Other_GET_INSTR} ) { e_recordForwardingInfo; i_popAddressQueue; } transition(IM_D_O, Other_GETX, IM_D_OI) { e_recordForwardingInfo; i_popAddressQueue; } transition( {IM_D_I, IM_D_OI}, {Other_GETS, Other_GET_INSTR, Other_GETX} ) { i_popAddressQueue; } transition(IM_D, Data, M) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; d_deallocateTBE; j_popDataQueue; } transition(IM_D_O, Data, O) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; o_cacheToForward; d_deallocateTBE; j_popDataQueue; } transition(IM_D_I, Data, I) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; o_cacheToForward; d_deallocateTBE; j_popDataQueue; } transition(IM_D_OI, Data, I) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; o_cacheToForward; d_deallocateTBE; j_popDataQueue; } // Transitions for SM_D, SM_D_O transition(SM_D, {Other_GETS,Other_GET_INSTR}, SM_D_O) { e_recordForwardingInfo; i_popAddressQueue; } transition(SM_D, Other_GETX, IM_D_I) { e_recordForwardingInfo; i_popAddressQueue; } transition(SM_D_O, {Other_GETS,Other_GET_INSTR}) { e_recordForwardingInfo; i_popAddressQueue; } transition(SM_D_O, Other_GETX, IM_D_OI) { e_recordForwardingInfo; i_popAddressQueue; } transition(SM_D, Data, M) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; d_deallocateTBE; j_popDataQueue; } transition(SM_D_O, Data, O) { s_saveDataInTBE; w_writeDataFromTBEToCache; hh_store_hit; o_cacheToForward; d_deallocateTBE; j_popDataQueue; } }