/* * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * $Id$ * */ machine(L1Cache, "MSI Directory L1 Cache CMP") { // NODE L1 CACHE // From this node's L1 cache TO the network // a local L1 -> this L2 bank, currently ordered with directory forwarded requests MessageBuffer requestFromL1Cache, network="To", virtual_network="0", ordered="true"; MessageBuffer dummyFrom1, network="To", virtual_network="1", ordered="false"; // dummy buffer that shouldn't be used MessageBuffer dummyFrom2, network="To", virtual_network="2", ordered="false"; // dummy buffer that shouldn't be used // a local L1 -> this L2 bank MessageBuffer responseFromL1Cache, network="To", virtual_network="3", ordered="false"; MessageBuffer dummyFrom4, network="To", virtual_network="4", ordered="false"; // dummy buffer that shouldn't be used // To this node's L1 cache FROM the network MessageBuffer dummyTo0, network="From", virtual_network="0", ordered="false"; // dummy buffer that shouldn't be used MessageBuffer dummyTo1, network="From", virtual_network="1", ordered="false"; // dummy buffer that shouldn't be used // a L2 bank -> this L1 MessageBuffer requestToL1Cache, network="From", virtual_network="2", ordered="true"; // a L2 bank -> this L1 MessageBuffer responseToL1Cache, network="From", virtual_network="3", ordered="false"; MessageBuffer dummyTo4, network="From", virtual_network="4", ordered="false"; // dummy buffer that shouldn't be used // STATES enumeration(State, desc="Cache states", default="L1Cache_State_L1_I") { // Base states NP, desc="Not present in either cache"; L1_I, desc="a L1 cache entry Idle"; L1_S, desc="a L1 cache entry Shared"; L1_M, desc="a L1 cache entry Modified", format="!b"; // Transient States L1_IS, desc="L1 idle, issued GETS, have not seen response yet"; L1_ISI, desc="L1 idle, issued GETS, saw INV, still waiting for data"; L1_IM, desc="L1 idle, issued GETX, have not seen response yet"; L1_IMI, desc="L1 idle, issued GETX, saw INV, still waiting for data"; L1_IMS, desc="L1 idle, issued GETX, saw DownGrade, still waiting for data"; L1_IMSI, desc="L1 idle, issued GETX, saw DownGrade, saw INV, still waiting for data"; L1_SI, desc="issued PUTS, waiting for response"; L1_MI, desc="issued PUTX, waiting for response"; } // EVENTS enumeration(Event, desc="Cache events") { // L1 events Load, desc="Load request from the home processor"; Ifetch, desc="I-fetch request from the home processor"; Store, desc="Store request from the home processor"; // L1 is required to send response to the L2 immediately L1_INV, "INV", desc="L1 Invalidation of M data", format="!r"; L1_INV_S, "INV", desc="L1 Invalidation of S data", format="!r"; L1_DownGrade, "Force DownGrade", desc="L2 cache forces an L1 cache in M to downgrade to S and writeback result"; // receiving of data L1_Data, "Data", desc="Data in response to an L1 request, transistion to M or S depending on request"; L1_Data_S, "Data S", desc="Data in response to an L1 request, write data then transistion to S"; L1_Data_I, "Data I", desc="Data in response to an L1 request, write data then transistion to I"; // receiving of acks L1_PutAck, "Put Ack", desc="PutS or PutX ack from L2"; // internal generated request // L1 request to replace block, results in either a PUTS or PUTX request L1_Replacement, desc="L1 Replacement", format="!r"; // Currently same as replacement, request initiated when block is in the wrong L1 cache L1_WriteBack, desc="on-chip L1 cache must write back to shared L2"; } // TYPES // CacheEntry structure(Entry, desc="...", interface="AbstractCacheEntry" ) { State CacheState, desc="cache state"; DataBlock DataBlk, desc="data for the block"; } // TBE fields structure(TBE, desc="...") { Address Address, desc="Physical address for this TBE"; State TBEState, desc="Transient state"; DataBlock DataBlk, desc="Buffer for the data block"; bool isPrefetch, desc="Set if this was caused by a prefetch"; } external_type(CacheMemory) { bool cacheAvail(Address); Address cacheProbe(Address); void allocate(Address); void deallocate(Address); Entry lookup(Address); void changePermission(Address, AccessPermission); bool isTagPresent(Address); } external_type(TBETable) { TBE lookup(Address); void allocate(Address); void deallocate(Address); bool isPresent(Address); } TBETable L1_TBEs, template_hack=""; CacheMemory L1IcacheMemory, template_hack="", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1I"', abstract_chip_ptr="true"; CacheMemory L1DcacheMemory, template_hack="", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1D"', abstract_chip_ptr="true"; MessageBuffer mandatoryQueue, ordered="false", rank="100", abstract_chip_ptr="true"; // the optionalQueue doesn't have to be ordered for correctness // however inforcing order ensures the prefetches reach the L2 in order MessageBuffer optionalQueue, ordered="true", rank="101", abstract_chip_ptr="true"; Sequencer sequencer, abstract_chip_ptr="true", constructor_hack="i"; int cache_state_to_int(State state); // inclusive cache returns L1 entries only Entry getL1CacheEntry(Address addr), return_by_ref="yes" { if (L1DcacheMemory.isTagPresent(addr)) { return L1DcacheMemory[addr]; } else { return L1IcacheMemory[addr]; } } void changeL1Permission(Address addr, AccessPermission permission) { if (L1DcacheMemory.isTagPresent(addr)) { return L1DcacheMemory.changePermission(addr, permission); } else if(L1IcacheMemory.isTagPresent(addr)) { return L1IcacheMemory.changePermission(addr, permission); } else { error("cannot change permission, L1 block not present"); } } bool isL1CacheTagPresent(Address addr) { return (L1DcacheMemory.isTagPresent(addr) || L1IcacheMemory.isTagPresent(addr)); } State getState(Address addr) { if((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == true){ DEBUG_EXPR(id); DEBUG_EXPR(addr); } assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false); if(L1_TBEs.isPresent(addr)) { return L1_TBEs[addr].TBEState; } else if (isL1CacheTagPresent(addr)) { return getL1CacheEntry(addr).CacheState; } return State:NP; } string getStateStr(Address addr) { return L1Cache_State_to_string(getState(addr)); } // when is this called? void setState(Address addr, State state) { assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false); // MUST CHANGE if(L1_TBEs.isPresent(addr)) { L1_TBEs[addr].TBEState := state; } if (isL1CacheTagPresent(addr)) { getL1CacheEntry(addr).CacheState := state; // Set permission if (state == State:L1_I || state == State:L1_SI || state == State:L1_MI) { changeL1Permission(addr, AccessPermission:Invalid); } else if (state == State:L1_S) { changeL1Permission(addr, AccessPermission:Read_Only); } else if (state == State:L1_M) { changeL1Permission(addr, AccessPermission:Read_Write); } else { changeL1Permission(addr, AccessPermission:Busy); } } } Event mandatory_request_type_to_event(CacheRequestType type) { if (type == CacheRequestType:LD) { return Event:Load; } else if (type == CacheRequestType:IFETCH) { return Event:Ifetch; } else if ((type == CacheRequestType:ST) || (type == CacheRequestType:ATOMIC)) { return Event:Store; } else { error("Invalid CacheRequestType"); } } // ** OUT_PORTS ** // All ports are to the same CMP network, queue id numbers determine IntraChip Switch location out_port(requestIntraChipL1Network_out, RequestMsg, requestFromL1Cache); out_port(responseIntraChipL1Network_out, ResponseMsg, responseFromL1Cache); // ** IN_PORTS ** in_port(dummyTo0_in, RequestMsg, dummyTo0) { if (dummyTo0_in.isReady()) { peek(dummyTo0_in, RequestMsg) { DEBUG_EXPR(in_msg.Address); DEBUG_EXPR(machineID); DEBUG_EXPR(in_msg.Type); DEBUG_EXPR(getState(in_msg.Address)); DEBUG_EXPR(in_msg.RequestorMachId); } error("dummyTo0 port should not be used"); } } in_port(dummyTo1_in, RequestMsg, dummyTo1) { if (dummyTo1_in.isReady()) { peek(dummyTo1_in, RequestMsg) { DEBUG_EXPR(in_msg.Address); DEBUG_EXPR(machineID); DEBUG_EXPR(in_msg.Type); DEBUG_EXPR(getState(in_msg.Address)); DEBUG_EXPR(in_msg.RequestorMachId); } error("dummyTo1 port should not be used"); } } in_port(dummyTo4_in, ResponseMsg, dummyTo4) { if (dummyTo4_in.isReady()) { peek(dummyTo4_in, ResponseMsg) { DEBUG_EXPR(in_msg.Address); DEBUG_EXPR(machineID); DEBUG_EXPR(in_msg.Type); DEBUG_EXPR(getState(in_msg.Address)); DEBUG_EXPR(in_msg.SenderMachId); } error("dummyTo4 port should not be used"); } } // Response IntraChip L1 Network - response msg to this L1 cache in_port(responseIntraChipL1Network_in, ResponseMsg, responseToL1Cache) { if (responseIntraChipL1Network_in.isReady()) { peek(responseIntraChipL1Network_in, ResponseMsg) { DEBUG_EXPR(in_msg.Address); DEBUG_EXPR(in_msg.Destination); DEBUG_EXPR(in_msg.SenderMachId); DEBUG_EXPR(machineID); assert(in_msg.Destination.isElement(machineID)); if(machineIDToMachineType(in_msg.SenderMachId) == MachineType:L2Cache) { if(in_msg.Type == CoherenceResponseType:DATA) { trigger(Event:L1_Data, in_msg.Address); // L1 now has data in its desired state } else if(in_msg.Type == CoherenceResponseType:DATA_S) { trigger(Event:L1_Data_S, in_msg.Address); // L1 now has data but must imediately move to S state } else if(in_msg.Type == CoherenceResponseType:DATA_I) { trigger(Event:L1_Data_I, in_msg.Address); // L1 now has data but must imediately move to INV state } else if(in_msg.Type == CoherenceResponseType:ACK) { trigger(Event:L1_PutAck, in_msg.Address); } else { error("Invalid L1 response type"); } } else { error("A non-L2 cache sent a response to a L1 cache"); } } } } // Request InterChip network - request from this L1 cache to the shared L2 in_port(requestIntraChipL1Network_in, RequestMsg, requestToL1Cache) { if(requestIntraChipL1Network_in.isReady()) { peek(requestIntraChipL1Network_in, RequestMsg) { assert(in_msg.Destination.isElement(machineID)); if(machineIDToMachineType(in_msg.RequestorMachId) == MachineType:L2Cache) { if(in_msg.Type == CoherenceRequestType:L1_DG) { trigger(Event:L1_DownGrade, in_msg.Address); // Force L1 to downgrade to S state } else if (in_msg.Type == CoherenceRequestType:INV) { trigger(Event:L1_INV, in_msg.Address); // L1 must invalidate it's modified version } else if (in_msg.Type == CoherenceRequestType:INV_S) { trigger(Event:L1_INV_S, in_msg.Address); // L1 must invalidate it's shared version } else { error("Invalid forwarded request type"); } } else { error("A non-L2 cache sent a request to a L1 cache"); } } } } // Mandatory Queue betweens Node's CPU and it's L1 caches in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") { if (mandatoryQueue_in.isReady()) { peek(mandatoryQueue_in, CacheMsg) { // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache if (in_msg.Type == CacheRequestType:IFETCH) { // ** INSTRUCTION ACCESS *** // Check to see if it is in the OTHER L1 if (L1DcacheMemory.isTagPresent(in_msg.Address)) { // The block is in the wrong L1, put the request on the queue to the shared L2 trigger(Event:L1_WriteBack, in_msg.Address); } if (L1IcacheMemory.isTagPresent(in_msg.Address)) { // The tag matches for the L1, so the L1 asks the L2 for it. trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } else { if (L1IcacheMemory.cacheAvail(in_msg.Address)) { // L1 does't have the line, but we have space for it in the L1 so let's see if the L2 has it trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } else { // No room in the L1, so we need to make room in the L1 trigger(Event:L1_Replacement, L1IcacheMemory.cacheProbe(in_msg.Address)); } } } else { // *** DATA ACCESS *** // Check to see if it is in the OTHER L1 if (L1IcacheMemory.isTagPresent(in_msg.Address)) { // The block is in the wrong L1, put the request on the queue to the shared L2 trigger(Event:L1_WriteBack, in_msg.Address); } if (L1DcacheMemory.isTagPresent(in_msg.Address)) { // The tag matches for the L1, so the L1 ask the L2 for it trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } else { if (L1DcacheMemory.cacheAvail(in_msg.Address)) { // L1 does't have the line, but we have space for it in the L1 let's see if the L2 has it trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } else { // No room in the L1, so we need to make room in the L1 trigger(Event:L1_Replacement, L1DcacheMemory.cacheProbe(in_msg.Address)); } } } } } } // ACTIONS action(a_issueGETS, "a", desc="Issue GETS") { peek(mandatoryQueue_in, CacheMsg) { enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GETS; out_msg.RequestorMachId := machineID; out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID)); DEBUG_EXPR(address); DEBUG_EXPR(out_msg.Destination); out_msg.MessageSize := MessageSizeType:Control; out_msg.L1CacheStateStr := getStateStr(address); out_msg.Prefetch := in_msg.Prefetch; out_msg.AccessMode := in_msg.AccessMode; } } } action(b_issueGETX, "b", desc="Issue GETX") { peek(mandatoryQueue_in, CacheMsg) { enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GETX; out_msg.RequestorMachId := machineID; DEBUG_EXPR(machineID); out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID)); DEBUG_EXPR(address); DEBUG_EXPR(out_msg.Destination); out_msg.MessageSize := MessageSizeType:Control; out_msg.L1CacheStateStr := getStateStr(address); out_msg.Prefetch := in_msg.Prefetch; out_msg.AccessMode := in_msg.AccessMode; } } } action(c_issueUPGRADE, "c", desc="Issue GETX") { peek(mandatoryQueue_in, CacheMsg) { enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:UPGRADE; out_msg.RequestorMachId := machineID; out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID)); DEBUG_EXPR(address); DEBUG_EXPR(out_msg.Destination); out_msg.MessageSize := MessageSizeType:Control; out_msg.L1CacheStateStr := getStateStr(address); out_msg.Prefetch := in_msg.Prefetch; out_msg.AccessMode := in_msg.AccessMode; } } } action(f_issueGETINSTR, "g", desc="Issue GETINSTR") { peek(mandatoryQueue_in, CacheMsg) { enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GET_INSTR; out_msg.RequestorMachId := machineID; out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID)); DEBUG_EXPR(address); DEBUG_EXPR(out_msg.Destination); out_msg.MessageSize := MessageSizeType:Control; out_msg.L1CacheStateStr := getStateStr(address); out_msg.Prefetch := in_msg.Prefetch; out_msg.AccessMode := in_msg.AccessMode; } } } action(d_issuePUTX, "d", desc="Issue PUTX") { enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:PUTX; out_msg.RequestorMachId := machineID; out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID)); out_msg.DataBlk := getL1CacheEntry(address).DataBlk; DEBUG_EXPR(address); DEBUG_EXPR(out_msg.Destination); DEBUG_EXPR(out_msg.DataBlk); out_msg.MessageSize := MessageSizeType:Data; out_msg.L1CacheStateStr := getStateStr(address); } } action(q_issuePUTS, "q", desc="Issue PUTS") { enqueue(requestIntraChipL1Network_out, RequestMsg, latency="L1_REQUEST_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:PUTS; out_msg.RequestorMachId := machineID; out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID)); DEBUG_EXPR(address); DEBUG_EXPR(out_msg.Destination); out_msg.DataBlk := getL1CacheEntry(address).DataBlk; out_msg.MessageSize := MessageSizeType:Data; out_msg.L1CacheStateStr := getStateStr(address); } } // L1 responding to a L2 request with data action(e_dataFromL1CacheToL2Cache, "e", desc="Send data from L1 cache to L2 Cache") { enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.SenderMachId := machineID; out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID)); out_msg.DataBlk := getL1CacheEntry(address).DataBlk; DEBUG_EXPR(address); DEBUG_EXPR(out_msg.Destination); DEBUG_EXPR(out_msg.DataBlk); out_msg.MessageSize := MessageSizeType:Data; } } action(f_dataFromTBEToL2Cache, "f", desc="Send data from L1_TBE to L2 Cache") { peek(requestIntraChipL1Network_in, RequestMsg) { enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.SenderMachId := machineID; out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID)); out_msg.DataBlk := L1_TBEs[in_msg.Address].DataBlk; DEBUG_EXPR(address); DEBUG_EXPR(out_msg.Destination); DEBUG_EXPR(out_msg.DataBlk); out_msg.MessageSize := MessageSizeType:Data; } } } // L1 responding to a L2 request with an invadiation ack action(t_sendInvAckToL2Cache, "t", desc="Send Invadiation ack to L2 Cache") { enqueue(responseIntraChipL1Network_out, ResponseMsg, latency="L1_RESPONSE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:INV_ACK; out_msg.SenderMachId := machineID; out_msg.Destination.add(map_L1CacheMachId_to_L2Cache(address, machineID)); DEBUG_EXPR(address); DEBUG_EXPR(out_msg.Destination); out_msg.MessageSize := MessageSizeType:Control; } } action(h_load_hit, "h", desc="If not prefetch, notify sequencer the load completed.") { DEBUG_EXPR(getL1CacheEntry(address).DataBlk); sequencer.readCallback(address, getL1CacheEntry(address).DataBlk); } action(hh_store_hit, "\h", desc="If not prefetch, notify sequencer that store completed.") { DEBUG_EXPR(getL1CacheEntry(address).DataBlk); sequencer.writeCallback(address, getL1CacheEntry(address).DataBlk); } action(i_allocateTBE, "i", desc="Allocate TBE (isPrefetch=0, number of invalidates=0)") { check_allocate(L1_TBEs); L1_TBEs.allocate(address); L1_TBEs[address].isPrefetch := false; } action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") { mandatoryQueue_in.dequeue(); } action(l_popRequestQueue, "l", desc="Pop incoming request queue and profile the delay within this virtual network") { profileMsgDelay(2, requestIntraChipL1Network_in.dequeue_getDelayCycles()); } action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue and profile the delay within this virtual network") { profileMsgDelay(3, responseIntraChipL1Network_in.dequeue_getDelayCycles()); } action(s_deallocateTBE, "s", desc="Deallocate TBE") { L1_TBEs.deallocate(address); } action(u_writeDataToL1Cache, "u", desc="Write data to cache") { peek(responseIntraChipL1Network_in, ResponseMsg) { getL1CacheEntry(address).DataBlk := in_msg.DataBlk; } } action(x_copyDataFromL1CacheToTBE, "x", desc="Copy data from cache to TBE") { L1_TBEs[address].DataBlk := getL1CacheEntry(address).DataBlk; } action(z_stall, "z", desc="Stall") { } action(ff_deallocateL1CacheBlock, "\f", desc="Deallocate L1 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") { if (L1DcacheMemory.isTagPresent(address)) { L1DcacheMemory.deallocate(address); } else { L1IcacheMemory.deallocate(address); } } action(oo_allocateL1DCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B.") { if (L1DcacheMemory.isTagPresent(address) == false) { L1DcacheMemory.allocate(address); } } action(pp_allocateL1ICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B.") { if (L1IcacheMemory.isTagPresent(address) == false) { L1IcacheMemory.allocate(address); } } //***************************************************** // TRANSITIONS //***************************************************** // Transitions for Load/Store/Replacement/WriteBack from transient states transition({L1_IS, L1_IM, L1_ISI, L1_IMI, L1_IMS, L1_IMSI, L1_SI, L1_MI}, {Load, Ifetch, Store, L1_Replacement, L1_WriteBack}) { z_stall; } // Transitions from Idle transition({NP,L1_I}, {L1_Replacement, L1_WriteBack}) { ff_deallocateL1CacheBlock; } transition({NP,L1_I}, Load, L1_IS) { oo_allocateL1DCacheBlock; i_allocateTBE; a_issueGETS; k_popMandatoryQueue; } transition({NP,L1_I}, Ifetch, L1_IS) { pp_allocateL1ICacheBlock; i_allocateTBE; f_issueGETINSTR; k_popMandatoryQueue; } transition({NP,L1_I}, Store, L1_IM) { oo_allocateL1DCacheBlock; i_allocateTBE; b_issueGETX; k_popMandatoryQueue; } // Transitions from Shared transition({L1_S}, {Load,Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(L1_S, Store, L1_IM) { i_allocateTBE; c_issueUPGRADE; k_popMandatoryQueue; } transition(L1_S, {L1_Replacement,L1_WriteBack}, L1_SI) { i_allocateTBE; q_issuePUTS; x_copyDataFromL1CacheToTBE; ff_deallocateL1CacheBlock; } transition(L1_S, L1_INV_S, L1_I) { t_sendInvAckToL2Cache; l_popRequestQueue; } // Transitions from Modified transition(L1_M, {Load, Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(L1_M, Store) { hh_store_hit; k_popMandatoryQueue; } transition(L1_M, {L1_Replacement, L1_WriteBack}, L1_MI) { i_allocateTBE; d_issuePUTX; x_copyDataFromL1CacheToTBE; ff_deallocateL1CacheBlock; } transition(L1_M, L1_INV, L1_I) { e_dataFromL1CacheToL2Cache; l_popRequestQueue; } transition(L1_M, L1_DownGrade, L1_S) { e_dataFromL1CacheToL2Cache; l_popRequestQueue; } // Transitions from L1_IS transition(L1_IS, L1_INV_S, L1_ISI) { t_sendInvAckToL2Cache; l_popRequestQueue; } transition(L1_IS, L1_Data, L1_S) { u_writeDataToL1Cache; h_load_hit; s_deallocateTBE; o_popIncomingResponseQueue; } transition(L1_IS, L1_Data_I, L1_I) { u_writeDataToL1Cache; h_load_hit; s_deallocateTBE; o_popIncomingResponseQueue; } // Transitions from L1_ISI transition(L1_ISI, L1_Data, L1_I) { u_writeDataToL1Cache; h_load_hit; s_deallocateTBE; o_popIncomingResponseQueue; } // Transitions from L1_IM transition(L1_IM, L1_INV, L1_IMI) { // we don't have to respond immediately because we know the data is coming l_popRequestQueue; } transition(L1_IM, L1_INV_S) { t_sendInvAckToL2Cache; l_popRequestQueue; } transition(L1_IM, L1_DownGrade, L1_IMS) { l_popRequestQueue; } transition(L1_IM, L1_Data, L1_M) { u_writeDataToL1Cache; hh_store_hit; s_deallocateTBE; o_popIncomingResponseQueue; } transition(L1_IM, L1_Data_S, L1_S) { u_writeDataToL1Cache; hh_store_hit; s_deallocateTBE; e_dataFromL1CacheToL2Cache; o_popIncomingResponseQueue; } transition(L1_IM, L1_Data_I, L1_I) { u_writeDataToL1Cache; hh_store_hit; s_deallocateTBE; e_dataFromL1CacheToL2Cache; o_popIncomingResponseQueue; } // Transitions from L1_IMI - data should arrive and no request are possilbe transition(L1_IMI, L1_Data, L1_I) { u_writeDataToL1Cache; hh_store_hit; s_deallocateTBE; e_dataFromL1CacheToL2Cache; o_popIncomingResponseQueue; } // Transitions from L1_IMS transition(L1_IMS, L1_Data, L1_S) { u_writeDataToL1Cache; hh_store_hit; s_deallocateTBE; e_dataFromL1CacheToL2Cache; o_popIncomingResponseQueue; } transition(L1_IMS, L1_INV_S, L1_IMSI) { l_popRequestQueue; } // Transitions from L1_IMSI transition(L1_IMSI, L1_Data, L1_I) { u_writeDataToL1Cache; hh_store_hit; s_deallocateTBE; e_dataFromL1CacheToL2Cache; o_popIncomingResponseQueue; } // Transitions from L1_SI transition(L1_SI, L1_INV_S) { t_sendInvAckToL2Cache; l_popRequestQueue; } transition(L1_SI, L1_PutAck, L1_I) { s_deallocateTBE; o_popIncomingResponseQueue; } // Transitions from L1_MI transition(L1_MI, L1_INV) { f_dataFromTBEToL2Cache; l_popRequestQueue; } transition(L1_MI, L1_DownGrade, L1_SI) { f_dataFromTBEToL2Cache; l_popRequestQueue; } transition(L1_MI, L1_PutAck, L1_I) { s_deallocateTBE; o_popIncomingResponseQueue; } }