/*
 * Copyright (c) 1999-2012 Mark D. Hill and David A. Wood
 * Copyright (c) 2011 Advanced Micro Devices, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

// Declarations of external types that are common to all protocols
external_type(int, primitive="yes", default="0");
external_type(bool, primitive="yes", default="false");
external_type(std::string, primitive="yes");
external_type(uint32_t, primitive="yes");
external_type(uint64_t, primitive="yes");
external_type(PacketPtr, primitive="yes");
external_type(Packet, primitive="yes");
external_type(Addr, primitive="yes");
external_type(Cycles, primitive="yes", default="Cycles(0)");
external_type(Tick, primitive="yes", default="0");

structure(WriteMask, external="yes", desc="...") {
  void clear();
  bool cmpMask(WriteMask);
  bool isEmpty();
  bool isFull();
  bool isOverlap(WriteMask);
  void orMask(WriteMask);
  void fillMask();
}

structure(DataBlock, external = "yes", desc="..."){
  void clear();
  void copyPartial(DataBlock, int, int);
  void copyPartial(DataBlock, WriteMask);
  void atomicPartial(DataBlock, WriteMask);
}

bool testAndRead(Addr addr, DataBlock datablk, Packet *pkt);
bool testAndReadMask(Addr addr, DataBlock datablk, WriteMask mask, Packet *pkt);
bool testAndWrite(Addr addr, DataBlock datablk, Packet *pkt);

// AccessPermission
// The following five states define the access permission of all memory blocks.
// These permissions have multiple uses.  They coordinate locking and
// synchronization primitives, as well as enable functional accesses.
// One should not need to add any additional permission values and it is very
// risky to do so.
enumeration(AccessPermission, desc="...", default="AccessPermission_NotPresent") {
  // Valid data
  Read_Only,  desc="block is Read Only (modulo functional writes)";
  Read_Write, desc="block is Read/Write";

  // Possibly Invalid data
  // The maybe stale permission indicates that accordingly to the protocol,
  // there is no guarantee the block contains valid data.  However, functional
  // writes should update the block because a dataless PUT request may
  // revalidate the block's data.
  Maybe_Stale, desc="block can be stale or revalidated by a dataless PUT";
  // In Broadcast/Snoop protocols, memory has no idea if it is exclusive owner
  // or not of a block, making it hard to make the logic of having only one
  // read_write block in the system impossible. This is to allow the memory to
  // say, "I have the block" and for the RubyPort logic to know that this is a
  // last-resort block if there are no writable copies in the caching hierarchy.
  // This is not supposed to be used in directory or token protocols where
  // memory/NB has an idea of what is going on in the whole system.
  Backing_Store, desc="for memory in Broadcast/Snoop protocols";

  // Invalid data
  Invalid,    desc="block is in an Invalid base state";
  NotPresent, desc="block is NotPresent";
  Busy,       desc="block is in a transient state, currently invalid";
}
//HSA scopes
enumeration(HSAScope, desc="...", default="HSAScope_UNSPECIFIED") {
  UNSPECIFIED, desc="Unspecified scope";
  NOSCOPE,     desc="Explictly unscoped";
  WAVEFRONT,   desc="Wavefront scope";
  WORKGROUP,   desc="Workgroup scope";
  DEVICE,      desc="Device scope";
  SYSTEM,      desc="System scope";
}

// HSA segment types
enumeration(HSASegment, desc="...", default="HSASegment_GLOBAL") {
  GLOBAL,   desc="Global segment";
  GROUP,    desc="Group segment";
  PRIVATE,  desc="Private segment";
  KERNARG,  desc="Kernarg segment";
  READONLY, desc="Readonly segment";
  SPILL,    desc="Spill segment";
  ARG,      desc="Arg segment";
}

// TesterStatus
enumeration(TesterStatus, desc="...") {
  Idle,            desc="Idle";
  Action_Pending,  desc="Action Pending";
  Ready,           desc="Ready";
  Check_Pending,   desc="Check Pending";
}

// InvalidateGeneratorStatus
enumeration(InvalidateGeneratorStatus, desc="...") {
  Load_Waiting,    desc="Load waiting to be issued";
  Load_Pending,    desc="Load issued";
  Inv_Waiting,     desc="Store (invalidate) waiting to be issued";
  Inv_Pending,     desc="Store (invalidate) issued";
}

// SeriesRequestGeneratorStatus
enumeration(SeriesRequestGeneratorStatus, desc="...") {
  Thinking,        desc="Doing work before next action";
  Request_Pending, desc="Request pending";
}

// LockStatus
enumeration(LockStatus, desc="...") {
  Unlocked,        desc="Lock is not held";
  Locked,          desc="Lock is held";
}

// SequencerStatus
enumeration(SequencerStatus, desc="...") {
  Idle,            desc="Idle";
  Pending,         desc="Pending";
}

enumeration(TransitionResult, desc="...") {
  Valid,         desc="Valid transition";
  ResourceStall, desc="Stalled due to insufficient resources";
  ProtocolStall, desc="Protocol specified stall";
  Reject,        desc="Rejected because of a type mismatch";
}

// RubyRequestType
enumeration(RubyRequestType, desc="...", default="RubyRequestType_NULL") {
  LD,                desc="Load";
  ST,                desc="Store";
  ATOMIC,            desc="Atomic Load/Store -- depricated. use ATOMIC_RETURN or ATOMIC_NO_RETURN";
  ATOMIC_RETURN,     desc="Atomic Load/Store, return data";
  ATOMIC_NO_RETURN,  desc="Atomic Load/Store, do not return data";
  IFETCH,            desc="Instruction fetch";
  IO,                desc="I/O";
  REPLACEMENT,       desc="Replacement";
  Load_Linked,       desc="";
  Store_Conditional, desc="";
  RMW_Read,          desc="";
  RMW_Write,         desc="";
  Locked_RMW_Read,   desc="";
  Locked_RMW_Write,  desc="";
  COMMIT,            desc="Commit version";
  NULL,              desc="Invalid request type";
  FLUSH,             desc="Flush request type";
  Release,           desc="Release operation";
  Acquire,           desc="Acquire opertion";
  AcquireRelease,    desc="Acquire and Release opertion";
  // [InvisiSpec] New request types
  SPEC_LD,           desc="Speculative load";
  EXPOSE,            desc="Expose";
  VALIDATE,          desc="Validate";
  SPEC_FLUSH,        desc="Flush SpecBuffer";
}

enumeration(SequencerRequestType, desc="...", default="SequencerRequestType_NULL") {
  Default,     desc="Replace this with access_types passed to the DMA Ruby object";
  LD,          desc="Load";
  ST,          desc="Store";
  ATOMIC,      desc="Atomic Load/Store";
  REPLACEMENT, desc="Replacement";
  FLUSH,       desc="Flush request type";
  NULL,        desc="Invalid request type";
}

enumeration(CacheRequestType, desc="...", default="CacheRequestType_NULL") {
  DataArrayRead,    desc="Read access to the cache's data array";
  DataArrayWrite,   desc="Write access to the cache's data array";
  TagArrayRead,     desc="Read access to the cache's tag array";
  TagArrayWrite,    desc="Write access to the cache's tag array";
}

enumeration(CacheResourceType, desc="...", default="CacheResourceType_NULL") {
  DataArray,    desc="Access to the cache's data array";
  TagArray,     desc="Access to the cache's tag array";
}

enumeration(DirectoryRequestType, desc="...", default="DirectoryRequestType_NULL") {
  Default,    desc="Replace this with access_types passed to the Directory Ruby object";
}

enumeration(DMASequencerRequestType, desc="...", default="DMASequencerRequestType_NULL") {
  Default,    desc="Replace this with access_types passed to the DMA Ruby object";
}

enumeration(MemoryControlRequestType, desc="...", default="MemoryControlRequestType_NULL") {
  Default,    desc="Replace this with access_types passed to the DMA Ruby object";
}


// These are statically defined types of states machines that we can have.
// If you want to add a new machine type, edit this enum.  It is not necessary
// for a protocol to have state machines defined for the all types here.  But
// you cannot use anything other than the ones defined here.  Also, a protocol
// can have only one state machine for a given type.
enumeration(MachineType, desc="...", default="MachineType_NULL") {
    L0Cache,     desc="L0 Cache Mach";
    L1Cache,     desc="L1 Cache Mach";
    L2Cache,     desc="L2 Cache Mach";
    L3Cache,     desc="L3 Cache Mach";
    Directory,   desc="Directory Mach";
    DMA,         desc="DMA Mach";
    Collector,   desc="Collector Mach";
    L1Cache_wCC, desc="L1 Cache Mach to track cache-to-cache transfer (used for miss latency profile)";
    L2Cache_wCC, desc="L2 Cache Mach to track cache-to-cache transfer (used for miss latency profile)";
    CorePair,    desc="Cache Mach (2 cores, Private L1Ds, Shared L1I & L2)";
    TCP,         desc="GPU L1 Data Cache (Texture Cache per Pipe)";
    TCC,         desc="GPU L2 Shared Cache (Texture Cache per Channel)";
    TCCdir,      desc="Directory at the GPU L2 Cache (TCC)";
    SQC,         desc="GPU L1 Instr Cache (Sequencer Cache)";
    RegionDir,   desc="Region-granular directory";
    RegionBuffer,desc="Region buffer for CPU and GPU";
    NULL,        desc="null mach type";
}

// MessageSizeType
enumeration(MessageSizeType, desc="...") {
  Control,    desc="Control Message";
  Data,       desc="Data Message";
  Request_Control, desc="Request";
  Reissue_Control, desc="Reissued request";
  Response_Data, desc="data response";
  ResponseL2hit_Data, desc="data response";
  ResponseLocal_Data, desc="data response";
  Response_Control, desc="non-data response";
  Writeback_Data, desc="Writeback data";
  Writeback_Control, desc="Writeback control";
  Broadcast_Control, desc="Broadcast control";
  Multicast_Control, desc="Multicast control";
  Forwarded_Control, desc="Forwarded control";
  Invalidate_Control, desc="Invalidate control";
  Unblock_Control, desc="Unblock control";
  Persistent_Control, desc="Persistent request activation messages";
  Completion_Control, desc="Completion messages";
  SPECLD_Control, desc="SPECLD control message";
  SPECLD_Request_Control, desc="SPECLD forward message";
  SPECLD_Data, desc="SPECLD data response";
  EXPOSE_Control, desc="EXPOSE control message";
  EXPOSE_Request_Control, desc="EXPOSE forward request";
  EXPOSE_Data, desc="EXPOSE data response";
}

// AccessType
enumeration(AccessType, desc="...") {
  Read, desc="Reading from cache";
  Write, desc="Writing to cache";
}

// RubyAccessMode
enumeration(RubyAccessMode, default="RubyAccessMode_User", desc="...") {
  Supervisor, desc="Supervisor mode";
  User,       desc="User mode";
  Device, desc="Device mode";
}

enumeration(PrefetchBit, default="PrefetchBit_No", desc="...") {
  No,    desc="No, not a prefetch";
  Yes,   desc="Yes, a prefetch";
  L1_HW, desc="This is a L1 hardware prefetch";
  L2_HW, desc="This is a L2 hardware prefetch";
}

// CacheMsg
structure(SequencerMsg, desc="...", interface="Message") {
  Addr LineAddress,       desc="Line address for this request";
  Addr PhysicalAddress,   desc="Physical address for this request";
  SequencerRequestType Type,     desc="Type of request (LD, ST, etc)";
  Addr ProgramCounter,    desc="Program counter of the instruction that caused the miss";
  RubyAccessMode AccessMode, desc="user/supervisor access type";
  DataBlock DataBlk,         desc="Data";
  int Len,                   desc="size in bytes of access";
  PrefetchBit Prefetch,      desc="Is this a prefetch request";
  MessageSizeType MessageSize, default="MessageSizeType_Request_Control";

  bool functionalRead(Packet *pkt) {
    return testAndRead(PhysicalAddress, DataBlk, pkt);
  }

  bool functionalWrite(Packet *pkt) {
    return testAndWrite(PhysicalAddress, DataBlk, pkt);
  }
}

// MaskPredictorType
enumeration(MaskPredictorType, "MaskPredictorType_Undefined", desc="...") {
  Undefined, desc="Undefined";
  AlwaysUnicast, desc="AlwaysUnicast";
  TokenD, desc="TokenD";
  AlwaysBroadcast, desc="AlwaysBroadcast";
  TokenB, desc="TokenB";
  TokenNull, desc="TokenNull";
  Random, desc="Random";
  Pairwise, desc="Pairwise";
  Owner, desc="Owner";
  BroadcastIfShared, desc="Broadcast-If-Shared";
  BroadcastCounter, desc="Broadcast Counter";
  Group, desc="Group";
  Counter, desc="Counter";
  StickySpatial, desc="StickySpatial";
  OwnerBroadcast, desc="Owner/Broadcast Hybrid";
  OwnerGroup, desc="Owner/Group Hybrid";
  OwnerBroadcastMod, desc="Owner/Broadcast Hybrid-Mod";
  OwnerGroupMod, desc="Owner/Group Hybrid-Mod";
  LastNMasks, desc="Last N Masks";
  BandwidthAdaptive, desc="Bandwidth Adaptive";
}

// MaskPredictorIndex
enumeration(MaskPredictorIndex, "MaskPredictorIndex_Undefined", desc="...") {
  Undefined, desc="Undefined";
  DataBlock, desc="Data Block";
  PC, desc="Program Counter";
}

// MaskPredictorTraining
enumeration(MaskPredictorTraining, "MaskPredictorTraining_Undefined", desc="...") {
  Undefined, desc="Undefined";
  None, desc="None";
  Implicit, desc="Implicit";
  Explicit, desc="Explicit";
  Both, desc="Both";
}

// Request Status
enumeration(RequestStatus, desc="...", default="RequestStatus_NULL")  {
  Ready, desc="The sequencer is ready and the request does not alias";
  Issued, desc="The sequencer successfully issued the request";
  BufferFull, desc="Can not issue because the sequencer is full";
  Aliased, desc="This request aliased with a currently outstanding request";
  Merged, desc="This request merged with a currently outstanding request";
  NULL, desc="";
}

// LinkDirection
enumeration(LinkDirection, desc="...") {
  In, desc="Inward link direction";
  Out, desc="Outward link direction";
}