/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * $Id$ */ #include "mem/ruby/buffers/MessageBuffer.hh" #include "mem/ruby/system/System.hh" MessageBuffer::MessageBuffer(const string &name) { m_msg_counter = 0; m_consumer_ptr = NULL; m_ordering_set = false; m_strict_fifo = true; m_size = 0; m_max_size = -1; m_last_arrival_time = 0; m_randomization = true; m_size_last_time_size_checked = 0; m_time_last_time_size_checked = 0; m_time_last_time_enqueue = 0; m_time_last_time_pop = 0; m_size_at_cycle_start = 0; m_msgs_this_cycle = 0; m_not_avail_count = 0; m_priority_rank = 0; m_name = name; } int MessageBuffer::getSize() { if(m_time_last_time_size_checked == g_eventQueue_ptr->getTime()){ return m_size_last_time_size_checked; } else { m_time_last_time_size_checked = g_eventQueue_ptr->getTime(); m_size_last_time_size_checked = m_size; return m_size; } } bool MessageBuffer::areNSlotsAvailable(int n) { // fast path when message buffers have infinite size if(m_max_size == -1) { return true; } // determine my correct size for the current cycle // pop operations shouldn't effect the network's visible size until next cycle, // but enqueue operations effect the visible size immediately int current_size = max(m_size_at_cycle_start, m_size); if (m_time_last_time_pop < g_eventQueue_ptr->getTime()) { // no pops this cycle - m_size is correct current_size = m_size; } else { if (m_time_last_time_enqueue < g_eventQueue_ptr->getTime()) { // no enqueues this cycle - m_size_at_cycle_start is correct current_size = m_size_at_cycle_start; } else { // both pops and enqueues occured this cycle - add new enqueued msgs to m_size_at_cycle_start current_size = m_size_at_cycle_start+m_msgs_this_cycle; } } // now compare the new size with our max size if(current_size+n <= m_max_size){ return true; } else { DEBUG_MSG(QUEUE_COMP,MedPrio,n); DEBUG_MSG(QUEUE_COMP,MedPrio,current_size); DEBUG_MSG(QUEUE_COMP,MedPrio,m_size); DEBUG_MSG(QUEUE_COMP,MedPrio,m_max_size); m_not_avail_count++; return false; } } const MsgPtr MessageBuffer::getMsgPtrCopy() const { assert(isReady()); MsgPtr temp_msg; temp_msg = *(m_prio_heap.peekMin().m_msgptr.ref()); assert(temp_msg.ref() != NULL); return temp_msg; } const Message* MessageBuffer::peekAtHeadOfQueue() const { const Message* msg_ptr; DEBUG_NEWLINE(QUEUE_COMP,MedPrio); DEBUG_MSG(QUEUE_COMP,MedPrio,"Peeking at head of queue " + m_name + " time: " + int_to_string(g_eventQueue_ptr->getTime()) + "."); assert(isReady()); msg_ptr = m_prio_heap.peekMin().m_msgptr.ref(); assert(msg_ptr != NULL); DEBUG_EXPR(QUEUE_COMP,MedPrio,*msg_ptr); DEBUG_NEWLINE(QUEUE_COMP,MedPrio); return msg_ptr; } // FIXME - move me somewhere else int random_time() { int time = 1; time += random() & 0x3; // [0...3] if ((random() & 0x7) == 0) { // 1 in 8 chance time += 100 + (random() % 0xf); // 100 + [1...15] } return time; } void MessageBuffer::enqueue(const MsgPtr& message, Time delta) { DEBUG_NEWLINE(QUEUE_COMP,HighPrio); DEBUG_MSG(QUEUE_COMP,HighPrio,"enqueue " + m_name + " time: " + int_to_string(g_eventQueue_ptr->getTime()) + "."); DEBUG_EXPR(QUEUE_COMP,MedPrio,message); DEBUG_NEWLINE(QUEUE_COMP,HighPrio); m_msg_counter++; m_size++; // record current time incase we have a pop that also adjusts my size if (m_time_last_time_enqueue < g_eventQueue_ptr->getTime()) { m_msgs_this_cycle = 0; // first msg this cycle m_time_last_time_enqueue = g_eventQueue_ptr->getTime(); } m_msgs_this_cycle++; // ASSERT(m_max_size == -1 || m_size <= m_max_size + 1); // the plus one is a kluge because of a SLICC issue if (!m_ordering_set) { // WARN_EXPR(*this); WARN_EXPR(m_name); ERROR_MSG("Ordering property of this queue has not been set"); } // Calculate the arrival time of the message, that is, the first // cycle the message can be dequeued. // printf ("delta %i \n", delta); assert(delta>0); Time current_time = g_eventQueue_ptr->getTime(); Time arrival_time = 0; if (!RubySystem::getRandomization() || (m_randomization == false)) { // No randomization arrival_time = current_time + delta; } else { // Randomization - ignore delta if (m_strict_fifo) { if (m_last_arrival_time < current_time) { m_last_arrival_time = current_time; } arrival_time = m_last_arrival_time + random_time(); } else { arrival_time = current_time + random_time(); } } // Check the arrival time assert(arrival_time > current_time); if (m_strict_fifo) { if (arrival_time >= m_last_arrival_time) { } else { WARN_EXPR(*this); WARN_EXPR(m_name); WARN_EXPR(current_time); WARN_EXPR(delta); WARN_EXPR(arrival_time); WARN_EXPR(m_last_arrival_time); ERROR_MSG("FIFO ordering violated"); } } m_last_arrival_time = arrival_time; // compute the delay cycles and set enqueue time Message* msg_ptr = NULL; msg_ptr = message.mod_ref(); assert(msg_ptr != NULL); assert(g_eventQueue_ptr->getTime() >= msg_ptr->getLastEnqueueTime()); // ensure we aren't dequeued early msg_ptr->setDelayedCycles((g_eventQueue_ptr->getTime() - msg_ptr->getLastEnqueueTime())+msg_ptr->getDelayedCycles()); msg_ptr->setLastEnqueueTime(arrival_time); // Insert the message into the priority heap MessageBufferNode thisNode(arrival_time, m_msg_counter, message); m_prio_heap.insert(thisNode); DEBUG_NEWLINE(QUEUE_COMP,HighPrio); DEBUG_MSG(QUEUE_COMP,HighPrio,"enqueue " + m_name + " with arrival_time " + int_to_string(arrival_time) + " cur_time: " + int_to_string(g_eventQueue_ptr->getTime()) + "."); DEBUG_EXPR(QUEUE_COMP,MedPrio,message); DEBUG_NEWLINE(QUEUE_COMP,HighPrio); // Schedule the wakeup if (m_consumer_ptr != NULL) { g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, arrival_time); } else { WARN_EXPR(*this); WARN_EXPR(m_name); ERROR_MSG("No consumer"); } } int MessageBuffer::dequeue_getDelayCycles(MsgPtr& message) { int delay_cycles = -1; // null value dequeue(message); // get the delay cycles delay_cycles = setAndReturnDelayCycles(message); assert(delay_cycles >= 0); return delay_cycles; } void MessageBuffer::dequeue(MsgPtr& message) { DEBUG_MSG(QUEUE_COMP,MedPrio,"dequeue from " + m_name); message = m_prio_heap.peekMin().m_msgptr; pop(); DEBUG_EXPR(QUEUE_COMP,MedPrio,message); } int MessageBuffer::dequeue_getDelayCycles() { int delay_cycles = -1; // null value // get MsgPtr of the message about to be dequeued MsgPtr message = m_prio_heap.peekMin().m_msgptr; // get the delay cycles delay_cycles = setAndReturnDelayCycles(message); dequeue(); assert(delay_cycles >= 0); return delay_cycles; } void MessageBuffer::pop() { DEBUG_MSG(QUEUE_COMP,MedPrio,"pop from " + m_name); assert(isReady()); m_prio_heap.extractMin(); // record previous size and time so the current buffer size isn't adjusted until next cycle if (m_time_last_time_pop < g_eventQueue_ptr->getTime()) { m_size_at_cycle_start = m_size; m_time_last_time_pop = g_eventQueue_ptr->getTime(); } m_size--; } void MessageBuffer::clear() { while(m_prio_heap.size() > 0){ m_prio_heap.extractMin(); } ASSERT(m_prio_heap.size() == 0); m_msg_counter = 0; m_size = 0; m_time_last_time_enqueue = 0; m_time_last_time_pop = 0; m_size_at_cycle_start = 0; m_msgs_this_cycle = 0; } void MessageBuffer::recycle() { DEBUG_MSG(QUEUE_COMP,MedPrio,"recycling " + m_name); assert(isReady()); MessageBufferNode node = m_prio_heap.extractMin(); node.m_time = g_eventQueue_ptr->getTime() + m_recycle_latency; m_prio_heap.insert(node); g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, g_eventQueue_ptr->getTime() + m_recycle_latency); } int MessageBuffer::setAndReturnDelayCycles(MsgPtr& message) { int delay_cycles = -1; // null value // get the delay cycles of the message at the top of the queue Message* msg_ptr = message.ref(); // this function should only be called on dequeue // ensure the msg hasn't been enqueued assert(msg_ptr->getLastEnqueueTime() <= g_eventQueue_ptr->getTime()); msg_ptr->setDelayedCycles((g_eventQueue_ptr->getTime() - msg_ptr->getLastEnqueueTime())+msg_ptr->getDelayedCycles()); delay_cycles = msg_ptr->getDelayedCycles(); assert(delay_cycles >= 0); return delay_cycles; } void MessageBuffer::print(ostream& out) const { out << "[MessageBuffer: "; if (m_consumer_ptr != NULL) { out << " consumer-yes "; } out << m_prio_heap << "] " << m_name << endl; } void MessageBuffer::printStats(ostream& out) { out << "MessageBuffer: " << m_name << " stats - msgs:" << m_msg_counter << " full:" << m_not_avail_count << endl; }