/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include "base/cprintf.hh" #include "base/misc.hh" #include "base/stl_helpers.hh" #include "debug/RubyQueue.hh" #include "mem/ruby/buffers/MessageBuffer.hh" #include "mem/ruby/system/System.hh" using namespace std; using m5::stl_helpers::operator<<; MessageBuffer::MessageBuffer(const string &name) { m_msg_counter = 0; m_consumer_ptr = NULL; m_ordering_set = false; m_strict_fifo = true; m_size = 0; m_max_size = -1; m_last_arrival_time = 0; m_randomization = true; m_size_last_time_size_checked = 0; m_time_last_time_size_checked = 0; m_time_last_time_enqueue = 0; m_time_last_time_pop = 0; m_size_at_cycle_start = 0; m_msgs_this_cycle = 0; m_not_avail_count = 0; m_priority_rank = 0; m_name = name; m_stall_msg_map.clear(); m_input_link_id = 0; m_vnet_id = 0; } int MessageBuffer::getSize() { if (m_time_last_time_size_checked == g_eventQueue_ptr->getTime()) { return m_size_last_time_size_checked; } else { m_time_last_time_size_checked = g_eventQueue_ptr->getTime(); m_size_last_time_size_checked = m_size; return m_size; } } bool MessageBuffer::areNSlotsAvailable(int n) { // fast path when message buffers have infinite size if (m_max_size == -1) { return true; } // determine my correct size for the current cycle // pop operations shouldn't effect the network's visible size // until next cycle, but enqueue operations effect the visible // size immediately int current_size = max(m_size_at_cycle_start, m_size); if (m_time_last_time_pop < g_eventQueue_ptr->getTime()) { // no pops this cycle - m_size is correct current_size = m_size; } else { if (m_time_last_time_enqueue < g_eventQueue_ptr->getTime()) { // no enqueues this cycle - m_size_at_cycle_start is correct current_size = m_size_at_cycle_start; } else { // both pops and enqueues occured this cycle - add new // enqueued msgs to m_size_at_cycle_start current_size = m_size_at_cycle_start+m_msgs_this_cycle; } } // now compare the new size with our max size if (current_size + n <= m_max_size) { return true; } else { DPRINTF(RubyQueue, "n: %d, current_size: %d, m_size: %d, " "m_max_size: %d\n", n, current_size, m_size, m_max_size); m_not_avail_count++; return false; } } const MsgPtr MessageBuffer::getMsgPtrCopy() const { assert(isReady()); return m_prio_heap.front().m_msgptr->clone(); } const Message* MessageBuffer::peekAtHeadOfQueue() const { DPRINTF(RubyQueue, "Peeking at head of queue.\n"); assert(isReady()); const Message* msg_ptr = m_prio_heap.front().m_msgptr.get(); assert(msg_ptr); DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr)); return msg_ptr; } // FIXME - move me somewhere else int random_time() { int time = 1; time += random() & 0x3; // [0...3] if ((random() & 0x7) == 0) { // 1 in 8 chance time += 100 + (random() % 0xf); // 100 + [1...15] } return time; } void MessageBuffer::enqueue(MsgPtr message, Time delta) { m_msg_counter++; m_size++; // record current time incase we have a pop that also adjusts my size if (m_time_last_time_enqueue < g_eventQueue_ptr->getTime()) { m_msgs_this_cycle = 0; // first msg this cycle m_time_last_time_enqueue = g_eventQueue_ptr->getTime(); } m_msgs_this_cycle++; if (!m_ordering_set) { panic("Ordering property of %s has not been set", m_name); } // Calculate the arrival time of the message, that is, the first // cycle the message can be dequeued. assert(delta>0); Time current_time = g_eventQueue_ptr->getTime(); Time arrival_time = 0; if (!RubySystem::getRandomization() || (m_randomization == false)) { // No randomization arrival_time = current_time + delta; } else { // Randomization - ignore delta if (m_strict_fifo) { if (m_last_arrival_time < current_time) { m_last_arrival_time = current_time; } arrival_time = m_last_arrival_time + random_time(); } else { arrival_time = current_time + random_time(); } } // Check the arrival time assert(arrival_time > current_time); if (m_strict_fifo) { if (arrival_time < m_last_arrival_time) { panic("FIFO ordering violated: %s name: %s current time: %d " "delta: %d arrival_time: %d last arrival_time: %d\n", *this, m_name, current_time * g_eventQueue_ptr->getClock(), delta * g_eventQueue_ptr->getClock(), arrival_time * g_eventQueue_ptr->getClock(), m_last_arrival_time * g_eventQueue_ptr->getClock()); } } // If running a cache trace, don't worry about the last arrival checks if (!g_system_ptr->m_warmup_enabled) { m_last_arrival_time = arrival_time; } // compute the delay cycles and set enqueue time Message* msg_ptr = message.get(); assert(msg_ptr != NULL); assert(g_eventQueue_ptr->getTime() >= msg_ptr->getLastEnqueueTime() && "ensure we aren't dequeued early"); msg_ptr->setDelayedCycles(g_eventQueue_ptr->getTime() - msg_ptr->getLastEnqueueTime() + msg_ptr->getDelayedCycles()); msg_ptr->setLastEnqueueTime(arrival_time); // Insert the message into the priority heap MessageBufferNode thisNode(arrival_time, m_msg_counter, message); m_prio_heap.push_back(thisNode); push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater()); DPRINTF(RubyQueue, "Enqueue with arrival_time %lld.\n", arrival_time * g_eventQueue_ptr->getClock()); DPRINTF(RubyQueue, "Enqueue Message: %s.\n", (*(message.get()))); // Schedule the wakeup if (m_consumer_ptr != NULL) { g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, arrival_time); m_consumer_ptr->storeEventInfo(m_vnet_id); } else { panic("No consumer: %s name: %s\n", *this, m_name); } } int MessageBuffer::dequeue_getDelayCycles(MsgPtr& message) { int delay_cycles = -1; // null value dequeue(message); // get the delay cycles delay_cycles = setAndReturnDelayCycles(message); assert(delay_cycles >= 0); return delay_cycles; } void MessageBuffer::dequeue(MsgPtr& message) { DPRINTF(RubyQueue, "Dequeueing\n"); message = m_prio_heap.front().m_msgptr; pop(); DPRINTF(RubyQueue, "Enqueue message is %s\n", (*(message.get()))); } int MessageBuffer::dequeue_getDelayCycles() { int delay_cycles = -1; // null value // get MsgPtr of the message about to be dequeued MsgPtr message = m_prio_heap.front().m_msgptr; // get the delay cycles delay_cycles = setAndReturnDelayCycles(message); dequeue(); assert(delay_cycles >= 0); return delay_cycles; } void MessageBuffer::pop() { DPRINTF(RubyQueue, "Popping\n"); assert(isReady()); pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater()); m_prio_heap.pop_back(); // record previous size and time so the current buffer size isn't // adjusted until next cycle if (m_time_last_time_pop < g_eventQueue_ptr->getTime()) { m_size_at_cycle_start = m_size; m_time_last_time_pop = g_eventQueue_ptr->getTime(); } m_size--; } void MessageBuffer::clear() { m_prio_heap.clear(); m_msg_counter = 0; m_size = 0; m_time_last_time_enqueue = 0; m_time_last_time_pop = 0; m_size_at_cycle_start = 0; m_msgs_this_cycle = 0; } void MessageBuffer::recycle() { DPRINTF(RubyQueue, "Recycling.\n"); assert(isReady()); MessageBufferNode node = m_prio_heap.front(); pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater()); node.m_time = g_eventQueue_ptr->getTime() + m_recycle_latency; m_prio_heap.back() = node; push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater()); g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, g_eventQueue_ptr->getTime() + m_recycle_latency); } void MessageBuffer::reanalyzeMessages(const Address& addr) { DPRINTF(RubyQueue, "ReanalyzeMessages\n"); assert(m_stall_msg_map.count(addr) > 0); // // Put all stalled messages associated with this address back on the // prio heap // while(!m_stall_msg_map[addr].empty()) { m_msg_counter++; MessageBufferNode msgNode(g_eventQueue_ptr->getTime() + 1, m_msg_counter, m_stall_msg_map[addr].front()); m_prio_heap.push_back(msgNode); push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater()); g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, msgNode.m_time); m_stall_msg_map[addr].pop_front(); } m_stall_msg_map.erase(addr); } void MessageBuffer::reanalyzeAllMessages() { DPRINTF(RubyQueue, "ReanalyzeAllMessages %s\n"); // // Put all stalled messages associated with this address back on the // prio heap // for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin(); map_iter != m_stall_msg_map.end(); ++map_iter) { while(!(map_iter->second).empty()) { m_msg_counter++; MessageBufferNode msgNode(g_eventQueue_ptr->getTime() + 1, m_msg_counter, (map_iter->second).front()); m_prio_heap.push_back(msgNode); push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater()); g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, msgNode.m_time); (map_iter->second).pop_front(); } } m_stall_msg_map.clear(); } void MessageBuffer::stallMessage(const Address& addr) { DPRINTF(RubyQueue, "Stalling due to %s\n", addr); assert(isReady()); assert(addr.getOffset() == 0); MsgPtr message = m_prio_heap.front().m_msgptr; pop(); // // Note: no event is scheduled to analyze the map at a later time. // Instead the controller is responsible to call reanalyzeMessages when // these addresses change state. // (m_stall_msg_map[addr]).push_back(message); } int MessageBuffer::setAndReturnDelayCycles(MsgPtr msg_ptr) { int delay_cycles = -1; // null value // get the delay cycles of the message at the top of the queue // this function should only be called on dequeue // ensure the msg hasn't been enqueued assert(msg_ptr->getLastEnqueueTime() <= g_eventQueue_ptr->getTime()); msg_ptr->setDelayedCycles(g_eventQueue_ptr->getTime() - msg_ptr->getLastEnqueueTime() + msg_ptr->getDelayedCycles()); delay_cycles = msg_ptr->getDelayedCycles(); assert(delay_cycles >= 0); return delay_cycles; } void MessageBuffer::print(ostream& out) const { ccprintf(out, "[MessageBuffer: "); if (m_consumer_ptr != NULL) { ccprintf(out, " consumer-yes "); } vector copy(m_prio_heap); sort_heap(copy.begin(), copy.end(), greater()); ccprintf(out, "%s] %s", copy, m_name); } void MessageBuffer::printStats(ostream& out) { out << "MessageBuffer: " << m_name << " stats - msgs:" << m_msg_counter << " full:" << m_not_avail_count << endl; }