/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mem/ruby/common/Histogram.hh" #include #include #include "base/intmath.hh" using namespace std; Histogram::Histogram(int binsize, uint32_t bins) { m_binsize = binsize; clear(bins); } Histogram::~Histogram() { } void Histogram::clear(int binsize, uint32_t bins) { m_binsize = binsize; clear(bins); } void Histogram::clear(uint32_t bins) { m_largest_bin = 0; m_max = 0; m_data.resize(bins); for (uint32_t i = 0; i < bins; i++) { m_data[i] = 0; } m_count = 0; m_max = 0; m_sumSamples = 0; m_sumSquaredSamples = 0; } void Histogram::doubleBinSize() { assert(m_binsize != -1); uint32_t t_bins = m_data.size(); for (uint32_t i = 0; i < t_bins/2; i++) { m_data[i] = m_data[i*2] + m_data[i*2 + 1]; } for (uint32_t i = t_bins/2; i < t_bins; i++) { m_data[i] = 0; } m_binsize *= 2; } void Histogram::add(int64_t value) { assert(value >= 0); m_max = max(m_max, value); m_count++; m_sumSamples += value; m_sumSquaredSamples += (value*value); uint32_t index; if (m_binsize == -1) { // This is a log base 2 histogram if (value == 0) { index = 0; } else { index = floorLog2(value) + 1; if (index >= m_data.size()) { index = m_data.size() - 1; } } } else { // This is a linear histogram uint32_t t_bins = m_data.size(); while (m_max >= (t_bins * m_binsize)) doubleBinSize(); index = value/m_binsize; } assert(index < m_data.size()); m_data[index]++; m_largest_bin = max(m_largest_bin, index); } void Histogram::add(Histogram& hist) { uint32_t t_bins = m_data.size(); if (hist.getBins() != t_bins) { if (m_count == 0) { m_data.resize(hist.getBins()); } else { fatal("Histograms with different number of bins " "cannot be combined!"); } } m_max = max(m_max, hist.getMax()); m_count += hist.size(); m_sumSamples += hist.getTotal(); m_sumSquaredSamples += hist.getSquaredTotal(); // Both histograms are log base 2. if (hist.getBinSize() == -1 && m_binsize == -1) { for (int j = 0; j < hist.getData(0); j++) { add(0); } for (uint32_t i = 1; i < t_bins; i++) { for (int j = 0; j < hist.getData(i); j++) { add(1<<(i-1)); // account for the + 1 index } } } else if (hist.getBinSize() >= 1 && m_binsize >= 1) { // Both the histogram are linear. // We are assuming that the two histograms have the same // minimum value that they can store. while (m_binsize > hist.getBinSize()) hist.doubleBinSize(); while (hist.getBinSize() > m_binsize) doubleBinSize(); assert(m_binsize == hist.getBinSize()); for (uint32_t i = 0; i < t_bins; i++) { m_data[i] += hist.getData(i); if (m_data[i] > 0) m_largest_bin = i; } } else { fatal("Don't know how to combine log and linear histograms!"); } } // Computation of standard deviation of samples a1, a2, ... aN // variance = [SUM {ai^2} - (SUM {ai})^2/N]/(N-1) // std deviation equals square root of variance double Histogram::getStandardDeviation() const { if (m_count <= 1) return 0.0; double variance = (double)(m_sumSquaredSamples - m_sumSamples * m_sumSamples / m_count) / (m_count - 1); return sqrt(variance); } void Histogram::print(ostream& out) const { printWithMultiplier(out, 1.0); } void Histogram::printPercent(ostream& out) const { if (m_count == 0) { printWithMultiplier(out, 0.0); } else { printWithMultiplier(out, 100.0 / double(m_count)); } } void Histogram::printWithMultiplier(ostream& out, double multiplier) const { if (m_binsize == -1) { out << "[binsize: log2 "; } else { out << "[binsize: " << m_binsize << " "; } out << "max: " << m_max << " "; out << "count: " << m_count << " "; // out << "total: " << m_sumSamples << " "; if (m_count == 0) { out << "average: NaN |"; out << "standard deviation: NaN |"; } else { out << "average: " << setw(5) << ((double) m_sumSamples)/m_count << " | "; out << "standard deviation: " << getStandardDeviation() << " |"; } for (uint32_t i = 0; i <= m_largest_bin; i++) { if (multiplier == 1.0) { out << " " << m_data[i]; } else { out << " " << double(m_data[i]) * multiplier; } } out << " ]"; } bool node_less_then_eq(const Histogram* n1, const Histogram* n2) { return (n1->size() > n2->size()); }