/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mem/ruby/filters/BulkBloomFilter.hh" #include #include "base/intmath.hh" #include "base/str.hh" #include "mem/ruby/system/RubySystem.hh" using namespace std; BulkBloomFilter::BulkBloomFilter(int size) { m_filter_size = size; m_filter_size_bits = floorLog2(m_filter_size); // split the filter bits in half, c0 and c1 m_sector_bits = m_filter_size_bits - 1; m_temp_filter.resize(m_filter_size); m_filter.resize(m_filter_size); clear(); // clear temp filter for (int i = 0; i < m_filter_size; ++i) { m_temp_filter[i] = 0; } } BulkBloomFilter::~BulkBloomFilter() { } void BulkBloomFilter::clear() { for (int i = 0; i < m_filter_size; i++) { m_filter[i] = 0; } } void BulkBloomFilter::increment(Addr addr) { // Not used } void BulkBloomFilter::decrement(Addr addr) { // Not used } void BulkBloomFilter::merge(AbstractBloomFilter * other_filter) { // TODO } void BulkBloomFilter::set(Addr addr) { // c0 contains the cache index bits int set_bits = m_sector_bits; int block_bits = RubySystem::getBlockSizeBits(); int c0 = bitSelect(addr, block_bits, block_bits + set_bits - 1); // c1 contains the lower m_sector_bits permuted bits //Address permuted_bits = permute(addr); //int c1 = permuted_bits.bitSelect(0, set_bits-1); int c1 = bitSelect(addr, block_bits+set_bits, (block_bits+2*set_bits) - 1); //assert(c0 < (m_filter_size/2)); //assert(c0 + (m_filter_size/2) < m_filter_size); //assert(c1 < (m_filter_size/2)); // set v0 bit m_filter[c0 + (m_filter_size/2)] = 1; // set v1 bit m_filter[c1] = 1; } void BulkBloomFilter::unset(Addr addr) { // not used } bool BulkBloomFilter::isSet(Addr addr) { // c0 contains the cache index bits int set_bits = m_sector_bits; int block_bits = RubySystem::getBlockSizeBits(); int c0 = bitSelect(addr, block_bits, block_bits + set_bits - 1); // c1 contains the lower 10 permuted bits //Address permuted_bits = permute(addr); //int c1 = permuted_bits.bitSelect(0, set_bits-1); int c1 = bitSelect(addr, block_bits+set_bits, (block_bits+2*set_bits) - 1); //assert(c0 < (m_filter_size/2)); //assert(c0 + (m_filter_size/2) < m_filter_size); //assert(c1 < (m_filter_size/2)); // set v0 bit m_temp_filter[c0 + (m_filter_size/2)] = 1; // set v1 bit m_temp_filter[c1] = 1; // perform filter intersection. If any c part is 0, no possibility // of address being in signature. get first c intersection part bool zero = false; for (int i = 0; i < m_filter_size/2; ++i){ // get intersection of signatures m_temp_filter[i] = m_temp_filter[i] && m_filter[i]; zero = zero || m_temp_filter[i]; } zero = !zero; if (zero) { // one section is zero, no possiblility of address in signature // reset bits we just set m_temp_filter[c0 + (m_filter_size / 2)] = 0; m_temp_filter[c1] = 0; return false; } // check second section zero = false; for (int i = m_filter_size / 2; i < m_filter_size; ++i) { // get intersection of signatures m_temp_filter[i] = m_temp_filter[i] && m_filter[i]; zero = zero || m_temp_filter[i]; } zero = !zero; if (zero) { // one section is zero, no possiblility of address in signature m_temp_filter[c0 + (m_filter_size / 2)] = 0; m_temp_filter[c1] = 0; return false; } // one section has at least one bit set m_temp_filter[c0 + (m_filter_size / 2)] = 0; m_temp_filter[c1] = 0; return true; } int BulkBloomFilter::getCount(Addr addr) { // not used return 0; } int BulkBloomFilter::getTotalCount() { int count = 0; for (int i = 0; i < m_filter_size; i++) { if (m_filter[i]) { count++; } } return count; } int BulkBloomFilter::getIndex(Addr addr) { return get_index(addr); } int BulkBloomFilter::readBit(const int index) { return 0; // TODO } void BulkBloomFilter::writeBit(const int index, const int value) { // TODO } void BulkBloomFilter::print(ostream& out) const { } int BulkBloomFilter::get_index(Addr addr) { return bitSelect(addr, RubySystem::getBlockSizeBits(), RubySystem::getBlockSizeBits() + m_filter_size_bits - 1); } Addr BulkBloomFilter::permute(Addr addr) { // permutes the original address bits according to Table 5 int block_offset = RubySystem::getBlockSizeBits(); Addr part1 = bitSelect(addr, block_offset, block_offset + 6), part2 = bitSelect(addr, block_offset + 9, block_offset + 9), part3 = bitSelect(addr, block_offset + 11, block_offset + 11), part4 = bitSelect(addr, block_offset + 17, block_offset + 17), part5 = bitSelect(addr, block_offset + 7, block_offset + 8), part6 = bitSelect(addr, block_offset + 10, block_offset + 10), part7 = bitSelect(addr, block_offset + 12, block_offset + 12), part8 = bitSelect(addr, block_offset + 13, block_offset + 13), part9 = bitSelect(addr, block_offset + 15, block_offset + 16), part10 = bitSelect(addr, block_offset + 18, block_offset + 20), part11 = bitSelect(addr, block_offset + 14, block_offset + 14); Addr result = (part1 << 14) | (part2 << 13) | (part3 << 12) | (part4 << 11) | (part5 << 9) | (part6 << 8) | (part7 << 7) | (part8 << 6) | (part9 << 4) | (part10 << 1) | (part11); // assume 32 bit addresses (both virtual and physical) // select the remaining high-order 11 bits Addr remaining_bits = bitSelect(addr, block_offset + 21, 31) << 21; result = result | remaining_bits; return result; }