/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Unordered buffer of messages that can be inserted such * that they can be dequeued after a given delta time has expired. */ #ifndef __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__ #define __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__ #include #include #include #include #include #include #include "debug/RubyQueue.hh" #include "mem/ruby/common/Address.hh" #include "mem/ruby/common/Consumer.hh" #include "mem/ruby/slicc_interface/Message.hh" #include "mem/packet.hh" #include "params/MessageBuffer.hh" #include "sim/sim_object.hh" class MessageBuffer : public SimObject { public: typedef MessageBufferParams Params; MessageBuffer(const Params *p); void reanalyzeMessages(Addr addr); void reanalyzeAllMessages(); void stallMessage(Addr addr); // TRUE if head of queue timestamp <= SystemTime bool isReady() const; void delayHead() { MsgPtr m = m_prio_heap.front(); std::pop_heap(m_prio_heap.begin(), m_prio_heap.end(), std::greater()); m_prio_heap.pop_back(); enqueue(m, Cycles(1)); } bool areNSlotsAvailable(unsigned int n); int getPriority() { return m_priority_rank; } void setPriority(int rank) { m_priority_rank = rank; } void setConsumer(Consumer* consumer) { DPRINTF(RubyQueue, "Setting consumer: %s\n", *consumer); if (m_consumer != NULL) { fatal("Trying to connect %s to MessageBuffer %s. \ \n%s already connected. Check the cntrl_id's.\n", *consumer, *this, *m_consumer); } m_consumer = consumer; } void setSender(ClockedObject* obj) { DPRINTF(RubyQueue, "Setting sender: %s\n", obj->name()); assert(m_sender == NULL || m_sender == obj); m_sender = obj; } void setReceiver(ClockedObject* obj) { DPRINTF(RubyQueue, "Setting receiver: %s\n", obj->name()); assert(m_receiver == NULL || m_receiver == obj); m_receiver = obj; } Consumer* getConsumer() { return m_consumer; } bool getOrdered() { return m_strict_fifo; } //! Function for extracting the message at the head of the //! message queue. The function assumes that the queue is nonempty. const Message* peek() const; const MsgPtr& peekMsgPtr() const { assert(isReady()); return m_prio_heap.front(); } void enqueue(MsgPtr message) { enqueue(message, Cycles(1)); } void enqueue(MsgPtr message, Cycles delta); //! Updates the delay cycles of the message at the head of the queue, //! removes it from the queue and returns its total delay. Cycles dequeue(); void recycle(); bool isEmpty() const { return m_prio_heap.size() == 0; } bool isStallMapEmpty() { return m_stall_msg_map.size() == 0; } unsigned int getStallMapSize() { return m_stall_msg_map.size(); } unsigned int getSize(); void clear(); void print(std::ostream& out) const; void clearStats() { m_not_avail_count = 0; m_msg_counter = 0; } void setIncomingLink(int link_id) { m_input_link_id = link_id; } void setVnet(int net) { m_vnet_id = net; } // Function for figuring out if any of the messages in the buffer can // satisfy the read request for the address in the packet. // Return value, if true, indicates that the request was fulfilled. bool functionalRead(Packet *pkt); // Function for figuring out if any of the messages in the buffer need // to be updated with the data from the packet. // Return value indicates the number of messages that were updated. // This required for debugging the code. uint32_t functionalWrite(Packet *pkt); private: //added by SS const Cycles m_recycle_latency; void reanalyzeList(std::list &, Tick); private: // Data Members (m_ prefix) //! The two ends of the buffer. ClockedObject* m_sender; ClockedObject* m_receiver; //! Consumer to signal a wakeup(), can be NULL Consumer* m_consumer; std::vector m_prio_heap; // use a std::map for the stalled messages as this container is // sorted and ensures a well-defined iteration order typedef std::map > StallMsgMapType; StallMsgMapType m_stall_msg_map; const unsigned int m_max_size; Cycles m_time_last_time_size_checked; unsigned int m_size_last_time_size_checked; // variables used so enqueues appear to happen immediately, while // pop happen the next cycle Cycles m_time_last_time_enqueue; Tick m_time_last_time_pop; Tick m_last_arrival_time; unsigned int m_size_at_cycle_start; unsigned int m_msgs_this_cycle; int m_not_avail_count; // count the # of times I didn't have N // slots available uint64 m_msg_counter; int m_priority_rank; const bool m_strict_fifo; const bool m_randomization; int m_input_link_id; int m_vnet_id; }; Cycles random_time(); inline std::ostream& operator<<(std::ostream& out, const MessageBuffer& obj) { obj.print(out); out << std::flush; return out; } #endif // __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__