/* * Copyright (c) 2008 Princeton University * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Niket Agarwal */ #include #include #include "base/cast.hh" #include "base/stl_helpers.hh" #include "debug/RubyNetwork.hh" #include "mem/ruby/buffers/MessageBuffer.hh" #include "mem/ruby/network/garnet/fixed-pipeline/NetworkInterface_d.hh" #include "mem/ruby/network/garnet/fixed-pipeline/flitBuffer_d.hh" #include "mem/ruby/slicc_interface/NetworkMessage.hh" using namespace std; using m5::stl_helpers::deletePointers; NetworkInterface_d::NetworkInterface_d(const Params *p) : ClockedObject(p), Consumer(this) { m_id = p->id; m_virtual_networks = p->virt_nets; m_vc_per_vnet = p->vcs_per_vnet; m_num_vcs = m_vc_per_vnet*m_virtual_networks; m_vc_round_robin = 0; m_ni_buffers.resize(m_num_vcs); m_ni_enqueue_time.resize(m_num_vcs); inNode_ptr.resize(m_virtual_networks); outNode_ptr.resize(m_virtual_networks); creditQueue = new flitBuffer_d(); // instantiating the NI flit buffers for (int i = 0; i < m_num_vcs; i++) { m_ni_buffers[i] = new flitBuffer_d(); m_ni_enqueue_time[i] = INFINITE_; } m_vc_allocator.resize(m_virtual_networks); // 1 allocator per vnet for (int i = 0; i < m_virtual_networks; i++) { m_vc_allocator[i] = 0; } } void NetworkInterface_d::init() { for (int i = 0; i < m_num_vcs; i++) { m_out_vc_state.push_back(new OutVcState_d(i, m_net_ptr)); } } NetworkInterface_d::~NetworkInterface_d() { deletePointers(m_out_vc_state); deletePointers(m_ni_buffers); delete creditQueue; delete outSrcQueue; } void NetworkInterface_d::addInPort(NetworkLink_d *in_link, CreditLink_d *credit_link) { inNetLink = in_link; in_link->setLinkConsumer(this); m_ni_credit_link = credit_link; credit_link->setSourceQueue(creditQueue); } void NetworkInterface_d::addOutPort(NetworkLink_d *out_link, CreditLink_d *credit_link) { m_credit_link = credit_link; credit_link->setLinkConsumer(this); outNetLink = out_link; outSrcQueue = new flitBuffer_d(); out_link->setSourceQueue(outSrcQueue); } void NetworkInterface_d::addNode(vector& in, vector& out) { assert(in.size() == m_virtual_networks); inNode_ptr = in; outNode_ptr = out; for (int j = 0; j < m_virtual_networks; j++) { // the protocol injects messages into the NI inNode_ptr[j]->setConsumer(this); inNode_ptr[j]->setReceiver(this); outNode_ptr[j]->setSender(this); } } bool NetworkInterface_d::flitisizeMessage(MsgPtr msg_ptr, int vnet) { NetworkMessage *net_msg_ptr = safe_cast(msg_ptr.get()); NetDest net_msg_dest = net_msg_ptr->getInternalDestination(); // gets all the destinations associated with this message. vector dest_nodes = net_msg_dest.getAllDest(); // Number of flits is dependent on the link bandwidth available. // This is expressed in terms of bytes/cycle or the flit size int num_flits = (int) ceil((double) m_net_ptr->MessageSizeType_to_int( net_msg_ptr->getMessageSize())/m_net_ptr->getNiFlitSize()); // loop to convert all multicast messages into unicast messages for (int ctr = 0; ctr < dest_nodes.size(); ctr++) { // this will return a free output virtual channel int vc = calculateVC(vnet); if (vc == -1) { return false ; } MsgPtr new_msg_ptr = msg_ptr->clone(); NodeID destID = dest_nodes[ctr]; NetworkMessage *new_net_msg_ptr = safe_cast(new_msg_ptr.get()); if (dest_nodes.size() > 1) { NetDest personal_dest; for (int m = 0; m < (int) MachineType_NUM; m++) { if ((destID >= MachineType_base_number((MachineType) m)) && destID < MachineType_base_number((MachineType) (m+1))) { // calculating the NetDest associated with this destID personal_dest.clear(); personal_dest.add((MachineID) {(MachineType) m, (destID - MachineType_base_number((MachineType) m))}); new_net_msg_ptr->getInternalDestination() = personal_dest; break; } } net_msg_dest.removeNetDest(personal_dest); // removing the destination from the original message to reflect // that a message with this particular destination has been // flitisized and an output vc is acquired net_msg_ptr->getInternalDestination().removeNetDest(personal_dest); } for (int i = 0; i < num_flits; i++) { m_net_ptr->increment_injected_flits(vnet); flit_d *fl = new flit_d(i, vc, vnet, num_flits, new_msg_ptr, curCycle()); fl->set_delay(curCycle() - ticksToCycles(msg_ptr->getTime())); m_ni_buffers[vc]->insert(fl); } m_ni_enqueue_time[vc] = curCycle(); m_out_vc_state[vc]->setState(ACTIVE_, curCycle()); } return true ; } // Looking for a free output vc int NetworkInterface_d::calculateVC(int vnet) { for (int i = 0; i < m_vc_per_vnet; i++) { int delta = m_vc_allocator[vnet]; m_vc_allocator[vnet]++; if(m_vc_allocator[vnet] == m_vc_per_vnet) m_vc_allocator[vnet] = 0; if (m_out_vc_state[(vnet*m_vc_per_vnet) + delta]->isInState( IDLE_, curCycle())) { return ((vnet*m_vc_per_vnet) + delta); } } return -1; } /* * The NI wakeup checks whether there are any ready messages in the protocol * buffer. If yes, it picks that up, flitisizes it into a number of flits and * puts it into an output buffer and schedules the output link. On a wakeup * it also checks whether there are flits in the input link. If yes, it picks * them up and if the flit is a tail, the NI inserts the corresponding message * into the protocol buffer. It also checks for credits being sent by the * downstream router. */ void NetworkInterface_d::wakeup() { DPRINTF(RubyNetwork, "m_id: %d woke up at time: %lld", m_id, curCycle()); MsgPtr msg_ptr; // Checking for messages coming from the protocol // can pick up a message/cycle for each virtual net for (int vnet = 0; vnet < m_virtual_networks; vnet++) { while (inNode_ptr[vnet]->isReady()) { // Is there a message waiting msg_ptr = inNode_ptr[vnet]->peekMsgPtr(); if (flitisizeMessage(msg_ptr, vnet)) { inNode_ptr[vnet]->dequeue(); } else { break; } } } scheduleOutputLink(); checkReschedule(); /*********** Picking messages destined for this NI **********/ if (inNetLink->isReady(curCycle())) { flit_d *t_flit = inNetLink->consumeLink(); bool free_signal = false; if (t_flit->get_type() == TAIL_ || t_flit->get_type() == HEAD_TAIL_) { free_signal = true; outNode_ptr[t_flit->get_vnet()]->enqueue( t_flit->get_msg_ptr(), Cycles(1)); } // Simply send a credit back since we are not buffering // this flit in the NI flit_d *credit_flit = new flit_d(t_flit->get_vc(), free_signal, curCycle()); creditQueue->insert(credit_flit); m_ni_credit_link-> scheduleEventAbsolute(clockEdge(Cycles(1))); int vnet = t_flit->get_vnet(); m_net_ptr->increment_received_flits(vnet); Cycles network_delay = curCycle() - t_flit->get_enqueue_time(); Cycles queueing_delay = t_flit->get_delay(); m_net_ptr->increment_network_latency(network_delay, vnet); m_net_ptr->increment_queueing_latency(queueing_delay, vnet); delete t_flit; } /****************** Checking for credit link *******/ if (m_credit_link->isReady(curCycle())) { flit_d *t_flit = m_credit_link->consumeLink(); m_out_vc_state[t_flit->get_vc()]->increment_credit(); if (t_flit->is_free_signal()) { m_out_vc_state[t_flit->get_vc()]->setState(IDLE_, curCycle()); } delete t_flit; } } /** This function looks at the NI buffers * if some buffer has flits which are ready to traverse the link in the next * cycle, and the downstream output vc associated with this flit has buffers * left, the link is scheduled for the next cycle */ void NetworkInterface_d::scheduleOutputLink() { int vc = m_vc_round_robin; m_vc_round_robin++; if (m_vc_round_robin == m_num_vcs) m_vc_round_robin = 0; for (int i = 0; i < m_num_vcs; i++) { vc++; if (vc == m_num_vcs) vc = 0; // model buffer backpressure if (m_ni_buffers[vc]->isReady(curCycle()) && m_out_vc_state[vc]->has_credits()) { bool is_candidate_vc = true; int t_vnet = get_vnet(vc); int vc_base = t_vnet * m_vc_per_vnet; if (m_net_ptr->isVNetOrdered(t_vnet)) { for (int vc_offset = 0; vc_offset < m_vc_per_vnet; vc_offset++) { int t_vc = vc_base + vc_offset; if (m_ni_buffers[t_vc]->isReady(curCycle())) { if (m_ni_enqueue_time[t_vc] < m_ni_enqueue_time[vc]) { is_candidate_vc = false; break; } } } } if (!is_candidate_vc) continue; m_out_vc_state[vc]->decrement_credit(); // Just removing the flit flit_d *t_flit = m_ni_buffers[vc]->getTopFlit(); t_flit->set_time(curCycle() + Cycles(1)); outSrcQueue->insert(t_flit); // schedule the out link outNetLink->scheduleEventAbsolute(clockEdge(Cycles(1))); if (t_flit->get_type() == TAIL_ || t_flit->get_type() == HEAD_TAIL_) { m_ni_enqueue_time[vc] = INFINITE_; } return; } } } int NetworkInterface_d::get_vnet(int vc) { for (int i = 0; i < m_virtual_networks; i++) { if (vc >= (i*m_vc_per_vnet) && vc < ((i+1)*m_vc_per_vnet)) { return i; } } fatal("Could not determine vc"); } void NetworkInterface_d::checkReschedule() { for (int vnet = 0; vnet < m_virtual_networks; vnet++) { if (inNode_ptr[vnet]->isReady()) { // Is there a message waiting scheduleEvent(Cycles(1)); return; } } for (int vc = 0; vc < m_num_vcs; vc++) { if (m_ni_buffers[vc]->isReady(curCycle() + Cycles(1))) { scheduleEvent(Cycles(1)); return; } } } void NetworkInterface_d::print(std::ostream& out) const { out << "[Network Interface]"; } uint32_t NetworkInterface_d::functionalWrite(Packet *pkt) { uint32_t num_functional_writes = 0; for (unsigned int i = 0; i < m_num_vcs; ++i) { num_functional_writes += m_ni_buffers[i]->functionalWrite(pkt); } num_functional_writes += outSrcQueue->functionalWrite(pkt); return num_functional_writes; } NetworkInterface_d * GarnetNetworkInterface_dParams::create() { return new NetworkInterface_d(this); }