/* * Copyright (c) 2008 Princeton University * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Niket Agarwal */ #include "mem/ruby/network/garnet/fixed-pipeline/GarnetNetwork_d.hh" #include "mem/ruby/network/garnet/fixed-pipeline/InputUnit_d.hh" #include "mem/ruby/network/garnet/fixed-pipeline/OutputUnit_d.hh" #include "mem/ruby/network/garnet/fixed-pipeline/Router_d.hh" #include "mem/ruby/network/garnet/fixed-pipeline/SWallocator_d.hh" SWallocator_d::SWallocator_d(Router_d *router) : Consumer(router) { m_router = router; m_num_vcs = m_router->get_num_vcs(); m_vc_per_vnet = m_router->get_vc_per_vnet(); m_local_arbiter_activity = 0; m_global_arbiter_activity = 0; } void SWallocator_d::init() { m_input_unit = m_router->get_inputUnit_ref(); m_output_unit = m_router->get_outputUnit_ref(); m_num_inports = m_router->get_num_inports(); m_num_outports = m_router->get_num_outports(); m_round_robin_outport.resize(m_num_outports); m_round_robin_inport.resize(m_num_inports); m_port_req.resize(m_num_outports); m_vc_winners.resize(m_num_outports); for (int i = 0; i < m_num_inports; i++) { m_round_robin_inport[i] = 0; } for (int i = 0; i < m_num_outports; i++) { m_port_req[i].resize(m_num_inports); m_vc_winners[i].resize(m_num_inports); m_round_robin_outport[i] = 0; for (int j = 0; j < m_num_inports; j++) { m_port_req[i][j] = false; // [outport][inport] } } } void SWallocator_d::wakeup() { arbitrate_inports(); // First stage of allocation arbitrate_outports(); // Second stage of allocation clear_request_vector(); check_for_wakeup(); m_router->call_switch(); } void SWallocator_d::arbitrate_inports() { // First do round robin arbitration on a set of input vc requests for (int inport = 0; inport < m_num_inports; inport++) { int invc = m_round_robin_inport[inport]; // Select next round robin vc candidate within valid vnet int next_round_robin_invc = invc; next_round_robin_invc++; if (next_round_robin_invc >= m_num_vcs) next_round_robin_invc = 0; m_round_robin_inport[inport] = next_round_robin_invc; for (int invc_iter = 0; invc_iter < m_num_vcs; invc_iter++) { invc++; if (invc >= m_num_vcs) invc = 0; if (m_input_unit[inport]->need_stage(invc, ACTIVE_, SA_, m_router->curCycle()) && m_input_unit[inport]->has_credits(invc)) { if (is_candidate_inport(inport, invc)) { int outport = m_input_unit[inport]->get_route(invc); m_local_arbiter_activity++; m_port_req[outport][inport] = true; m_vc_winners[outport][inport]= invc; break; // got one vc winner for this port } } } } } bool SWallocator_d::is_candidate_inport(int inport, int invc) { int outport = m_input_unit[inport]->get_route(invc); Cycles t_enqueue_time = m_input_unit[inport]->get_enqueue_time(invc); int t_vnet = get_vnet(invc); int vc_base = t_vnet*m_vc_per_vnet; if ((m_router->get_net_ptr())->isVNetOrdered(t_vnet)) { for (int vc_offset = 0; vc_offset < m_vc_per_vnet; vc_offset++) { int temp_vc = vc_base + vc_offset; if (m_input_unit[inport]->need_stage(temp_vc, ACTIVE_, SA_, m_router->curCycle()) && (m_input_unit[inport]->get_route(temp_vc) == outport) && (m_input_unit[inport]->get_enqueue_time(temp_vc) < t_enqueue_time)) { return false; break; } } } return true; } void SWallocator_d::arbitrate_outports() { // Now there are a set of input vc requests for output vcs. // Again do round robin arbitration on these requests for (int outport = 0; outport < m_num_outports; outport++) { int inport = m_round_robin_outport[outport]; m_round_robin_outport[outport]++; if (m_round_robin_outport[outport] >= m_num_outports) m_round_robin_outport[outport] = 0; for (int inport_iter = 0; inport_iter < m_num_inports; inport_iter++) { inport++; if (inport >= m_num_inports) inport = 0; // inport has a request this cycle for outport: if (m_port_req[outport][inport]) { m_port_req[outport][inport] = false; int invc = m_vc_winners[outport][inport]; int outvc = m_input_unit[inport]->get_outvc(invc); // remove flit from Input Unit flit_d *t_flit = m_input_unit[inport]->getTopFlit(invc); t_flit->advance_stage(ST_, m_router->curCycle()); t_flit->set_vc(outvc); t_flit->set_outport(outport); t_flit->set_time(m_router->curCycle()); m_output_unit[outport]->decrement_credit(outvc); m_router->update_sw_winner(inport, t_flit); m_global_arbiter_activity++; if ((t_flit->get_type() == TAIL_) || t_flit->get_type() == HEAD_TAIL_) { // Send a credit back // along with the information that this VC is now idle m_input_unit[inport]->increment_credit(invc, true, m_router->curCycle()); // This Input VC should now be empty assert(!m_input_unit[inport]-> isReady(invc, m_router->curCycle())); m_input_unit[inport]->set_vc_state(IDLE_, invc, m_router->curCycle()); m_input_unit[inport]->set_enqueue_time(invc, Cycles(INFINITE_)); } else { // Send a credit back // but do not indicate that the VC is idle m_input_unit[inport]->increment_credit(invc, false, m_router->curCycle()); } break; // got a in request for this outport } } } } void SWallocator_d::check_for_wakeup() { Cycles nextCycle = m_router->curCycle() + Cycles(1); for (int i = 0; i < m_num_inports; i++) { for (int j = 0; j < m_num_vcs; j++) { if (m_input_unit[i]->need_stage(j, ACTIVE_, SA_, nextCycle)) { m_router->vcarb_req(); return; } } } } int SWallocator_d::get_vnet(int invc) { int vnet = invc/m_vc_per_vnet; assert(vnet < m_router->get_num_vnets()); return vnet; } void SWallocator_d::clear_request_vector() { for (int i = 0; i < m_num_outports; i++) { for (int j = 0; j < m_num_inports; j++) { m_port_req[i][j] = false; } } }