/* * Copyright (c) 2009 Princeton University * Copyright (c) 2009 The Regents of the University of California * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Hangsheng Wang (Orion 1.0, Princeton) * Xinping Zhu (Orion 1.0, Princeton) * Xuning Chen (Orion 1.0, Princeton) * Bin Li (Orion 2.0, Princeton) * Kambiz Samadi (Orion 2.0, UC San Diego) */ #include #include #include "mem/ruby/network/orion/Crossbar/MultreeCrossbar.hh" #include "mem/ruby/network/orion/TechParameter.hh" using namespace std; MultreeCrossbar::MultreeCrossbar( const string& conn_type_str_, const string& trans_type_str_, uint32_t num_in_, uint32_t num_out_, uint32_t data_width_, uint32_t degree_, const TechParameter *tech_param_ptr_ ) : Crossbar( MULTREE_CROSSBAR, conn_type_str_, trans_type_str_, num_in_, num_out_, data_width_, 0, 0, degree_, tech_param_ptr_) { m_len_req_wire = 0; init(); } MultreeCrossbar::~MultreeCrossbar() {} double MultreeCrossbar::get_dynamic_energy(bool is_max_) const { double e_atomic; double e_access = 0; e_atomic = m_e_chg_in*m_data_width*(is_max_? 1:0.5); e_access += e_atomic; e_atomic = m_e_chg_out*m_data_width*(is_max_? 1:0.5); e_access += e_atomic; e_atomic = m_e_chg_ctr; e_access += e_atomic; if (m_depth > 1) { e_atomic = m_e_chg_int*m_data_width*(m_depth-1)*(is_max_? 1:0.5); e_access += e_atomic; } return e_access; } void MultreeCrossbar::init() { double CrsbarCellWidth = m_tech_param_ptr->get_CrsbarCellWidth(); double CCmetal = m_tech_param_ptr->get_CCmetal(); double Lamda = m_tech_param_ptr->get_Lamda(); double CC3metal = m_tech_param_ptr->get_CC3metal(); double len_in_wire; // input wire horizontal segment length len_in_wire = m_num_in*m_data_width*CrsbarCellWidth*(m_num_out/2); m_cap_in_wire = len_in_wire*CCmetal; // input wire vertical segment length len_in_wire = m_num_in*m_data_width*(5*Lamda)*(m_num_out/2); m_cap_in_wire += len_in_wire*CC3metal; m_cap_out_wire = 0; double Cmetal = m_tech_param_ptr->get_Cmetal(); double len_ctr_wire = m_num_in*m_data_width*CrsbarCellWidth*(m_num_out/2)/2; m_cap_ctr_wire = Cmetal*len_ctr_wire; double e_factor = m_tech_param_ptr->get_EnergyFactor(); m_e_chg_in = calc_in_cap()*e_factor; m_e_chg_out = calc_out_cap(m_degree)*e_factor; m_e_chg_int = calc_int_cap()*e_factor; m_depth = (uint32_t)ceil(log((double)m_num_in)/log((double)m_degree)); // control signal should reset after transmission is done if (m_depth == 1) { // only one level of control sigal m_e_chg_ctr = calc_ctr_cap(m_cap_ctr_wire, 0, 0)*e_factor; } else { // first level and last level control signals m_e_chg_ctr = calc_ctr_cap(m_cap_ctr_wire, 0, 1)*e_factor + calc_ctr_cap(0, 1, 0)*e_factor; // intermediate control signals if (m_depth > 2) { m_e_chg_ctr += (m_depth-2)*calc_ctr_cap(0, 1, 1)*e_factor; } } m_i_static = calc_i_static(); } double MultreeCrossbar::calc_i_static() { double Wdecinvn = m_tech_param_ptr->get_Wdecinvn(); double Wdecinvp = m_tech_param_ptr->get_Wdecinvp(); double Woutdrivern = m_tech_param_ptr->get_Woutdrivern(); double Woutdriverp = m_tech_param_ptr->get_Woutdriverp(); double WdecNORn = m_tech_param_ptr->get_WdecNORn(); double WdecNORp = m_tech_param_ptr->get_WdecNORp(); double NOR2_TAB_0 = m_tech_param_ptr->get_NOR2_TAB(0); double NOR2_TAB_1 = m_tech_param_ptr->get_NOR2_TAB(1); double NOR2_TAB_2 = m_tech_param_ptr->get_NOR2_TAB(2); double NOR2_TAB_3 = m_tech_param_ptr->get_NOR2_TAB(3); double NMOS_TAB_0 = m_tech_param_ptr->get_NMOS_TAB(0); double PMOS_TAB_0 = m_tech_param_ptr->get_PMOS_TAB(0); double i_static = 0; // input driver i_static += (Wdecinvn*NMOS_TAB_0+Wdecinvp*PMOS_TAB_0)*m_num_in*m_data_width; // output driver i_static += (Woutdrivern*NMOS_TAB_0+Woutdriverp*PMOS_TAB_0)*m_num_out*m_data_width; // mux i_static += (WdecNORp*NOR2_TAB_0+WdecNORn*(NOR2_TAB_1+NOR2_TAB_2+NOR2_TAB_3))/4*(2*m_num_in-1)*m_num_out*m_data_width; // control signal inverter i_static += (Wdecinvn*NMOS_TAB_0+Wdecinvp*PMOS_TAB_0)*m_num_in*m_num_out; return i_static; }