/* * Copyright (c) 2010 Massachusetts Institute of Technology * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Chia-Hsin Owen Chen * Tushar Krishna */ #include "mem/ruby/network/orion/NetworkPower.hh" #include "mem/ruby/network/orion/OrionConfig.hh" #include "mem/ruby/network/orion/OrionRouter.hh" #include "mem/ruby/network/orion/OrionLink.hh" double Router_d::calculate_power() { //Network Activities from garnet calculate_performance_numbers(); double sim_cycles; sim_cycles = g_eventQueue_ptr->getTime() - m_network_ptr->getRubyStartTime(); // Number of virtual networks/message classes declared in Ruby // maybe greater than active virtual networks. // Estimate active virtual networks for correct power estimates int num_active_vclass = 0; std::vector active_vclass_ary; active_vclass_ary.resize(m_virtual_networks); std::vector vc_local_arbit_count_active; std::vector vc_global_arbit_count_active; std::vector buf_read_count_active; std::vector buf_write_count_active; for (int i =0; i < m_virtual_networks; i++) { if (vc_local_arbit_count[i] > 0) { num_active_vclass++; active_vclass_ary[i] = true; vc_local_arbit_count_active.push_back(vc_local_arbit_count[i]); vc_global_arbit_count_active.push_back(vc_global_arbit_count[i]); buf_read_count_active.push_back(buf_read_count[i]); buf_write_count_active.push_back(buf_write_count[i]); } else { // Inactive vclass assert(vc_global_arbit_count[i] == 0); active_vclass_ary[i] = false; } } // Orion Initialization OrionConfig* orion_cfg_ptr; OrionRouter* orion_rtr_ptr; static double freq_Hz; const string cfg_fn = "src/mem/ruby/network/orion/router.cfg"; orion_cfg_ptr = new OrionConfig(cfg_fn); freq_Hz = orion_cfg_ptr->get("FREQUENCY"); uint32_t num_in_port = m_input_unit.size(); uint32_t num_out_port = m_output_unit.size(); uint32_t num_vclass = num_active_vclass; std::vector vclass_type_ary; for (int i = 0; i < m_virtual_networks; i++) { if (active_vclass_ary[i]) { int temp_vc = i*m_vc_per_vnet; vclass_type_ary.push_back((uint32_t) m_network_ptr->get_vnet_type(temp_vc)); } } assert(vclass_type_ary.size() == num_active_vclass); uint32_t num_vc_per_vclass = m_vc_per_vnet; uint32_t in_buf_per_data_vc = m_network_ptr->getBuffersPerDataVC(); uint32_t in_buf_per_ctrl_vc = m_network_ptr->getBuffersPerCtrlVC(); uint32_t flit_width = m_flit_width * 8; //flit width in bits orion_rtr_ptr = new OrionRouter( num_in_port, num_out_port, num_vclass, vclass_type_ary, num_vc_per_vclass, in_buf_per_data_vc, in_buf_per_ctrl_vc, flit_width, orion_cfg_ptr ); //Power Calculation double Pbuf_wr_dyn = 0.0; double Pbuf_rd_dyn = 0.0; double Pvc_arb_local_dyn = 0.0; double Pvc_arb_global_dyn = 0.0; double Psw_arb_local_dyn = 0.0; double Psw_arb_global_dyn = 0.0; double Pxbar_dyn = 0.0; double Pclk_dyn = 0.0; double Ptotal_dyn = 0.0; double Pbuf_sta = 0.0; double Pvc_arb_sta = 0.0; double Psw_arb_sta = 0.0; double Pxbar_sta = 0.0; double Ptotal_sta = 0.0; double Ptotal = 0.0; //Dynamic Power // Note: For each active arbiter in vc_arb or sw_arb of size T:1, // assuming half the requests (T/2) are high on average. // TODO: estimate expected value of requests from simulation. for (int i = 0; i < num_vclass; i++) { // Buffer Write Pbuf_wr_dyn += orion_rtr_ptr->calc_dynamic_energy_buf(i, WRITE_MODE, false)* (buf_write_count_active[i]/sim_cycles)*freq_Hz; // Buffer Read Pbuf_rd_dyn += orion_rtr_ptr->calc_dynamic_energy_buf(i, READ_MODE, false)* (buf_read_count_active[i]/sim_cycles)*freq_Hz; // VC arbitration local // Each input VC arbitrates for one output VC (in its vclass) // at its output port. // Arbiter size: num_vc_per_vclass:1 Pvc_arb_local_dyn += orion_rtr_ptr->calc_dynamic_energy_local_vc_arb(i, num_vc_per_vclass/2, false)* (vc_local_arbit_count_active[i]/sim_cycles)* freq_Hz; // VC arbitration global // Each output VC chooses one input VC out of all possible requesting // VCs (within vclass) at all input ports // Arbiter size: num_in_port*num_vc_per_vclass:1 // Round-robin at each input VC for outvcs in the local stage will // try to keep outvc conflicts to the minimum. // Assuming conflicts due to request for same outvc from // num_in_port/2 requests. // TODO: use garnet to estimate this Pvc_arb_global_dyn += orion_rtr_ptr->calc_dynamic_energy_global_vc_arb(i, num_in_port/2, false)* (vc_global_arbit_count_active[i]/sim_cycles)* freq_Hz; } // Switch Allocation Local // Each input port chooses one input VC as requestor // Arbiter size: num_vclass*num_vc_per_vclass:1 Psw_arb_local_dyn += orion_rtr_ptr->calc_dynamic_energy_local_sw_arb( num_vclass*num_vc_per_vclass/2, false)* (sw_local_arbit_count/sim_cycles)* freq_Hz; // Switch Allocation Global // Each output port chooses one input port as winner // Arbiter size: num_in_port:1 Psw_arb_global_dyn += orion_rtr_ptr->calc_dynamic_energy_global_sw_arb( num_in_port/2, false)* (sw_global_arbit_count/sim_cycles)* freq_Hz; // Crossbar Pxbar_dyn += orion_rtr_ptr->calc_dynamic_energy_xbar(false)* (crossbar_count/sim_cycles)*freq_Hz; // Clock Pclk_dyn += orion_rtr_ptr->calc_dynamic_energy_clock()*freq_Hz; // Total Ptotal_dyn = Pbuf_wr_dyn + Pbuf_rd_dyn + Pvc_arb_local_dyn + Pvc_arb_global_dyn + Psw_arb_local_dyn + Psw_arb_global_dyn + Pxbar_dyn + Pclk_dyn; // Static Power Pbuf_sta = orion_rtr_ptr->get_static_power_buf(); Pvc_arb_sta = orion_rtr_ptr->get_static_power_va(); Psw_arb_sta = orion_rtr_ptr->get_static_power_sa(); Pxbar_sta = orion_rtr_ptr->get_static_power_xbar(); Ptotal_sta += Pbuf_sta + Pvc_arb_sta + Psw_arb_sta + Pxbar_sta; Ptotal = Ptotal_dyn + Ptotal_sta; return Ptotal; } double NetworkLink_d::calculate_power() { OrionConfig* orion_cfg_ptr; OrionLink* orion_link_ptr; static double freq_Hz; double link_length; int channel_width; // Initialization const string cfg_fn = "src/mem/ruby/network/orion/router.cfg"; orion_cfg_ptr = new OrionConfig(cfg_fn); freq_Hz = orion_cfg_ptr->get("FREQUENCY"); link_length = orion_cfg_ptr->get("LINK_LENGTH"); channel_width = m_net_ptr->getFlitSize(); orion_link_ptr = new OrionLink( link_length, channel_width /* channel width */, orion_cfg_ptr); // Dynamic Power double sim_cycles = (double)(g_eventQueue_ptr->getTime() - m_net_ptr->getRubyStartTime()); double Plink_dyn = orion_link_ptr->calc_dynamic_energy(channel_width/2)* (m_link_utilized/ sim_cycles)*freq_Hz; // Static Power double Plink_sta = orion_link_ptr->get_static_power(); double Ptotal = Plink_dyn + Plink_sta; return Ptotal; }