/* * Copyright (c) 2009 Princeton University * Copyright (c) 2009 The Regents of the University of California * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Hangsheng Wang (Orion 1.0, Princeton) * Xinping Zhu (Orion 1.0, Princeton) * Xuning Chen (Orion 1.0, Princeton) * Bin Li (Orion 2.0, Princeton) * Kambiz Samadi (Orion 2.0, UC San Diego) */ #include #include "mem/ruby/network/orion/Allocator/SWAllocator.hh" #include "mem/ruby/network/orion/Allocator/VCAllocator.hh" #include "mem/ruby/network/orion/Buffer/Buffer.hh" #include "mem/ruby/network/orion/Crossbar/Crossbar.hh" #include "mem/ruby/network/orion/Clock.hh" #include "mem/ruby/network/orion/OrionConfig.hh" #include "OrionRouter.hh" using namespace std; OrionRouter::OrionRouter( uint32_t num_in_port_, uint32_t num_out_port_, uint32_t num_vclass_, std::vector vclass_type_ary_, uint32_t num_vc_per_vclass_, uint32_t in_buf_per_data_vc_, uint32_t in_buf_per_ctrl_vc_, uint32_t flit_width_, OrionConfig* orion_cfg_ptr_ ) { assert((num_in_port_ == num_in_port_) && (num_in_port_ != 0)); assert((num_out_port_ == num_out_port_) && (num_out_port_ != 0)); assert((num_vclass_ == num_vclass_) && (num_vclass_ != 0)); assert((num_vc_per_vclass_ == num_vc_per_vclass_) && (num_vc_per_vclass_ != 0)); assert(in_buf_per_data_vc_ != 0); assert(in_buf_per_ctrl_vc_ != 0); assert((flit_width_ == flit_width_) && (flit_width_ != 0)); orion_cfg_ptr_->set_num_in_port(num_in_port_); orion_cfg_ptr_->set_num_out_port(num_out_port_); orion_cfg_ptr_->set_num_vclass(num_vclass_); orion_cfg_ptr_->set_flit_width(flit_width_); m_orion_cfg_ptr = orion_cfg_ptr_; m_num_in_port = m_orion_cfg_ptr->get("NUM_INPUT_PORT"); m_num_out_port = m_orion_cfg_ptr->get("NUM_OUTPUT_PORT"); m_flit_width = m_orion_cfg_ptr->get("FLIT_WIDTH"); m_num_vclass = m_orion_cfg_ptr->get("NUM_VIRTUAL_CLASS"); m_num_vc_per_vclass_ary = new uint32_t [m_num_vclass]; m_in_buf_num_set_ary = new uint32_t [m_num_vclass]; for (int i = 0; i < m_num_vclass; i++) { // can also suppport different vcs per vclass m_num_vc_per_vclass_ary[i] = num_vc_per_vclass_; if (vclass_type_ary_[i] == 0) // ctrl m_in_buf_num_set_ary[i] = in_buf_per_ctrl_vc_; else if (vclass_type_ary_[i] == 1) // data m_in_buf_num_set_ary[i] = in_buf_per_data_vc_; else assert(0); } init(); } OrionRouter::~OrionRouter() { delete[] m_num_vc_per_vclass_ary; delete[] m_in_buf_num_set_ary; if (m_in_buf_ary_ptr) { for (uint32_t i = 0; i < m_num_vclass; i++) { delete m_in_buf_ary_ptr[i]; } delete[] m_in_buf_ary_ptr; } if (m_va_ary_ptr) { for (uint32_t i = 0; i < m_num_vclass; i++) { delete m_va_ary_ptr[i]; } delete[] m_va_ary_ptr; } delete m_xbar_ptr; delete m_sa_ptr; delete m_clk_ptr; } double OrionRouter::calc_dynamic_energy_buf(uint32_t vclass_id_, bool is_read_, bool is_max_) const { assert(vclass_id_ < m_num_vclass); if (m_in_buf_ary_ptr) { if (m_in_buf_ary_ptr[vclass_id_]) { return m_in_buf_ary_ptr[vclass_id_]->get_dynamic_energy(is_read_, is_max_); } else { return 0; } } else { return 0; } } double OrionRouter::calc_dynamic_energy_xbar(bool is_max_) const { if (m_xbar_ptr) { return m_xbar_ptr->get_dynamic_energy(is_max_); } else { return 0; } } double OrionRouter::calc_dynamic_energy_local_vc_arb(uint32_t vclass_id_, double num_req_, bool is_max_) const { assert(vclass_id_ < m_num_vclass); if (m_va_ary_ptr) { if (m_va_ary_ptr[vclass_id_]) { return m_va_ary_ptr[vclass_id_]->get_dynamic_energy_local_vc_arb(num_req_, is_max_); } else { return 0; } } else { return 0; } } double OrionRouter::calc_dynamic_energy_global_vc_arb(uint32_t vclass_id_, double num_req_, bool is_max_) const { assert(vclass_id_ < m_num_vclass); if (m_va_ary_ptr) { if (m_va_ary_ptr[vclass_id_]) { return m_va_ary_ptr[vclass_id_]->get_dynamic_energy_global_vc_arb(num_req_, is_max_); } else { return 0; } } else { return 0; } } //double OrionRouter::calc_dynamic_energy_vc_select(bool is_read_, bool is_max_) const //{ // if (m_vc_select_ptr) // { // return m_vc_select_ptr->get_dynamic_energy_vc_select(is_read_, is_max_); // } // else // { // return 0; // } //} double OrionRouter::calc_dynamic_energy_local_sw_arb(double num_req_, bool is_max_) const { if (m_sa_ptr) { return m_sa_ptr->get_dynamic_energy_local_sw_arb(num_req_, is_max_); } else { return 0; } } double OrionRouter::calc_dynamic_energy_global_sw_arb(double num_req_, bool is_max_) const { if (m_sa_ptr) { return m_sa_ptr->get_dynamic_energy_global_sw_arb(num_req_, is_max_); } else { return 0; } } double OrionRouter::calc_dynamic_energy_clock() const { if (m_clk_ptr) { return m_clk_ptr->get_dynamic_energy(); } else { return 0; } } double OrionRouter::get_static_power_buf() const { if (m_in_buf_ary_ptr) { double total_static_power = 0; for (uint32_t i = 0; i < m_num_vclass; i++) { uint32_t num_in_buf; if (m_is_in_shared_buf) { num_in_buf = m_num_in_port; } else { num_in_buf = m_num_vc_per_vclass_ary[i]*m_num_in_port; } total_static_power += m_in_buf_ary_ptr[i]->get_static_power()*(double)num_in_buf; } return total_static_power; } else { return 0; } } double OrionRouter::get_static_power_xbar() const { if (m_xbar_ptr) { return m_xbar_ptr->get_static_power(); } else { return 0; } } double OrionRouter::get_static_power_va() const { if (m_va_ary_ptr) { double total_static_power = 0; for (uint32_t i = 0; i < m_num_vclass; i++) { total_static_power += m_va_ary_ptr[i]->get_static_power(); } return total_static_power; } else { return 0; } } //double OrionRouter::get_static_power_vc_select() const //{ // if (m_vc_select_ptr) // { // return m_vc_select_ptr->get_static_power(); // } // else // { // return 0; // } //} double OrionRouter::get_static_power_sa() const { if (m_sa_ptr) { return m_sa_ptr->get_static_power(); } else { return 0; } } double OrionRouter::get_static_power_clock() const { if (m_clk_ptr) { return m_clk_ptr->get_static_power(); } else { return 0; } } void OrionRouter::init() { m_total_num_vc = 0; for (uint32_t i = 0; i < m_num_vclass; i++) { m_total_num_vc += m_num_vc_per_vclass_ary[i]; } if (m_total_num_vc > 1) { m_is_in_shared_buf = m_orion_cfg_ptr->get("IS_IN_SHARED_BUFFER"); m_is_out_shared_buf = m_orion_cfg_ptr->get("IS_OUT_SHARED_BUFFER"); m_is_in_shared_switch = m_orion_cfg_ptr->get("IS_IN_SHARED_SWITCH"); m_is_out_shared_switch = m_orion_cfg_ptr->get("IS_OUT_SHARED_SWITCH"); } else { m_is_in_shared_buf = false; m_is_out_shared_buf = false; m_is_in_shared_switch = false; m_is_out_shared_switch = false; } //input buffer bool is_in_buf = m_orion_cfg_ptr->get("IS_INPUT_BUFFER"); if (is_in_buf) { bool is_fifo = true; bool is_outdrv = (!m_is_in_shared_buf) && (m_is_in_shared_switch); const string& in_buf_model_str = m_orion_cfg_ptr->get("IN_BUF_MODEL"); m_in_buf_ary_ptr = new Buffer* [m_num_vclass]; for (uint32_t i = 0; i < m_num_vclass; i++) { uint32_t in_buf_num_read_port = m_orion_cfg_ptr->get("IN_BUF_NUM_READ_PORT"); uint32_t in_buf_num_set = m_in_buf_num_set_ary[i]; m_in_buf_ary_ptr[i] = new Buffer(in_buf_model_str, is_fifo, is_outdrv, in_buf_num_set, m_flit_width, in_buf_num_read_port, 1, m_orion_cfg_ptr); } } else { m_in_buf_ary_ptr = NULL; } bool is_out_buf = m_orion_cfg_ptr->get("IS_OUTPUT_BUFFER"); //crossbar uint32_t num_switch_in; if (is_in_buf) { if (m_is_in_shared_buf) { uint32_t in_buf_num_read_port = m_orion_cfg_ptr->get("IN_BUF_NUM_READ_PORT"); num_switch_in = in_buf_num_read_port*m_num_in_port; } else if (m_is_in_shared_switch) { num_switch_in = 1*m_num_in_port; } else { num_switch_in = m_total_num_vc*m_num_in_port; } } else { num_switch_in = 1*m_num_in_port; } uint32_t num_switch_out; if (is_out_buf) { if (m_is_out_shared_buf) { uint32_t out_buf_num_write_port = m_orion_cfg_ptr->get("OUT_BUF_NUM_WRITE_PORT"); num_switch_out = out_buf_num_write_port*m_num_out_port; } else if (m_is_out_shared_switch) { num_switch_out = 1*m_num_out_port; } else { num_switch_out = m_total_num_vc*m_num_out_port; } } else { num_switch_out = 1*m_num_out_port; } const string& xbar_model_str = m_orion_cfg_ptr->get("CROSSBAR_MODEL"); m_xbar_ptr = Crossbar::create_crossbar(xbar_model_str, num_switch_in, num_switch_out, m_flit_width, m_orion_cfg_ptr); //vc allocator const string& va_model_str = m_orion_cfg_ptr->get("VA_MODEL"); m_va_ary_ptr = new VCAllocator* [m_num_vclass]; //m_vc_select_ary_ptr = new VCAllocator* [m_num_vclass]; for (uint32_t i = 0; i < m_num_vclass; i++) { m_va_ary_ptr[i] = VCAllocator::create_vcallocator(va_model_str, m_num_in_port, m_num_out_port, 1, m_num_vc_per_vclass_ary[i], m_orion_cfg_ptr); //m_vc_select_ary_ptr[i] = VCAllocator::create_vcallocator("VC_SELECT", // m_num_in_port, m_num_out_port, 1, m_num_vc_per_vclass_ary[i], m_orion_cfg_ptr); } //sw allocator m_sa_ptr = SWAllocator::create_swallocator( m_num_in_port, m_num_out_port, 1, m_total_num_vc, m_xbar_ptr, m_orion_cfg_ptr); //cloc m_clk_ptr = new Clock(is_in_buf, m_is_in_shared_switch, is_out_buf, m_is_out_shared_switch, m_orion_cfg_ptr); return; } void OrionRouter::print() const { if (m_in_buf_ary_ptr) { for (uint32_t i = 0; i < m_num_vclass; i++) { cout << "VClass " << i << endl; if (m_in_buf_ary_ptr[i]) m_in_buf_ary_ptr[i]->print_all(); } } m_xbar_ptr->print_all(); for (uint32_t i = 0; i < m_num_vclass; i++) { cout << "VClass " << i << endl; m_va_ary_ptr[i]->print_all(); //m_vc_select_ary_ptr[i]->print_all(); } m_sa_ptr->print_all(); //cout << "Router - Dynamic Energy" << endl; //cout << "\t" << "Buffer Read = " << calc_dynamic_energy_buf(true) << endl; //cout << "\t" << "Buffer Write = " << calc_dynamic_energy_buf(false) << endl; //cout << "\t" << "Crossbar = " << calc_dynamic_energy_xbar() << endl; //cout << "\t" << "Local VC Allocator(1) = " << calc_dynamic_energy_local_vc_arb(1) << endl; //cout << "\t" << "Global VC Allocator(1) = " << calc_dynamic_energy_global_vc_arb(1) << endl; //cout << "\t" << "VC Select Read = " << calc_dynamic_energy_vc_select(true) << endl; //cout << "\t" << "VC Select Write = " << calc_dynamic_energy_vc_select(false) << endl; //cout << "\t" << "Local SW Allocator(2) = " << calc_dynamic_energy_local_sw_arb(1) << endl; //cout << "\t" << "Global SW Allocator(2) = " << calc_dynamic_energy_global_sw_arb(1) << endl; //cout << "\t" << "Clock = " << calc_dynamic_energy_clock() << endl; //cout << endl; //cout << "Router - Static Power" << endl; //cout << "\t" << "Buffer = " << get_static_power_buf() << endl; //cout << "\t" << "Crossbar = " << get_static_power_xbar() << endl; //cout << "\t" << "VC Allocator = " << get_static_power_va() << endl; //cout << "\t" << "SW Allocator = " << get_static_power_sa() << endl; //cout << "\t" << "Clock = " << get_static_power_clock() << endl; //cout << endl; return; }