/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mem/ruby/network/simple/PerfectSwitch.hh" #include #include "base/cast.hh" #include "base/random.hh" #include "debug/RubyNetwork.hh" #include "mem/ruby/network/MessageBuffer.hh" #include "mem/ruby/network/simple/SimpleNetwork.hh" #include "mem/ruby/network/simple/Switch.hh" #include "mem/ruby/slicc_interface/Message.hh" using namespace std; const int PRIORITY_SWITCH_LIMIT = 128; // Operator for helper class bool operator<(const LinkOrder& l1, const LinkOrder& l2) { return (l1.m_value < l2.m_value); } PerfectSwitch::PerfectSwitch(SwitchID sid, Switch *sw, uint32_t virt_nets) : Consumer(sw), m_switch_id(sid), m_switch(sw) { m_round_robin_start = 0; m_wakeups_wo_switch = 0; m_virtual_networks = virt_nets; } void PerfectSwitch::init(SimpleNetwork *network_ptr) { m_network_ptr = network_ptr; for (int i = 0;i < m_virtual_networks;++i) { m_pending_message_count.push_back(0); } } void PerfectSwitch::addInPort(const vector& in) { NodeID port = m_in.size(); m_in.push_back(in); for (int i = 0; i < in.size(); ++i) { if (in[i] != nullptr) { in[i]->setConsumer(this); in[i]->setIncomingLink(port); in[i]->setVnet(i); } } } void PerfectSwitch::addOutPort(const vector& out, const NetDest& routing_table_entry) { // Setup link order LinkOrder l; l.m_value = 0; l.m_link = m_out.size(); m_link_order.push_back(l); // Add to routing table m_out.push_back(out); m_routing_table.push_back(routing_table_entry); } PerfectSwitch::~PerfectSwitch() { } void PerfectSwitch::operateVnet(int vnet) { // This is for round-robin scheduling int incoming = m_round_robin_start; m_round_robin_start++; if (m_round_robin_start >= m_in.size()) { m_round_robin_start = 0; } if (m_pending_message_count[vnet] > 0) { // for all input ports, use round robin scheduling for (int counter = 0; counter < m_in.size(); counter++) { // Round robin scheduling incoming++; if (incoming >= m_in.size()) { incoming = 0; } // Is there a message waiting? if (m_in[incoming].size() <= vnet) { continue; } MessageBuffer *buffer = m_in[incoming][vnet]; if (buffer == nullptr) { continue; } operateMessageBuffer(buffer, incoming, vnet); } } } void PerfectSwitch::operateMessageBuffer(MessageBuffer *buffer, int incoming, int vnet) { MsgPtr msg_ptr; Message *net_msg_ptr = NULL; // temporary vectors to store the routing results vector output_links; vector output_link_destinations; Tick current_time = m_switch->clockEdge(); while (buffer->isReady(current_time)) { DPRINTF(RubyNetwork, "incoming: %d\n", incoming); // Peek at message msg_ptr = buffer->peekMsgPtr(); net_msg_ptr = msg_ptr.get(); DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr)); output_links.clear(); output_link_destinations.clear(); NetDest msg_dsts = net_msg_ptr->getDestination(); // Unfortunately, the token-protocol sends some // zero-destination messages, so this assert isn't valid // assert(msg_dsts.count() > 0); assert(m_link_order.size() == m_routing_table.size()); assert(m_link_order.size() == m_out.size()); if (m_network_ptr->getAdaptiveRouting()) { if (m_network_ptr->isVNetOrdered(vnet)) { // Don't adaptively route for (int out = 0; out < m_out.size(); out++) { m_link_order[out].m_link = out; m_link_order[out].m_value = 0; } } else { // Find how clogged each link is for (int out = 0; out < m_out.size(); out++) { int out_queue_length = 0; for (int v = 0; v < m_virtual_networks; v++) { out_queue_length += m_out[out][v]->getSize(current_time); } int value = (out_queue_length << 8) | random_mt.random(0, 0xff); m_link_order[out].m_link = out; m_link_order[out].m_value = value; } // Look at the most empty link first sort(m_link_order.begin(), m_link_order.end()); } } for (int i = 0; i < m_routing_table.size(); i++) { // pick the next link to look at int link = m_link_order[i].m_link; NetDest dst = m_routing_table[link]; DPRINTF(RubyNetwork, "dst: %s\n", dst); if (!msg_dsts.intersectionIsNotEmpty(dst)) continue; // Remember what link we're using output_links.push_back(link); // Need to remember which destinations need this message in // another vector. This Set is the intersection of the // routing_table entry and the current destination set. The // intersection must not be empty, since we are inside "if" output_link_destinations.push_back(msg_dsts.AND(dst)); // Next, we update the msg_destination not to include // those nodes that were already handled by this link msg_dsts.removeNetDest(dst); } assert(msg_dsts.count() == 0); // Check for resources - for all outgoing queues bool enough = true; for (int i = 0; i < output_links.size(); i++) { int outgoing = output_links[i]; if (!m_out[outgoing][vnet]->areNSlotsAvailable(1, current_time)) enough = false; DPRINTF(RubyNetwork, "Checking if node is blocked ..." "outgoing: %d, vnet: %d, enough: %d\n", outgoing, vnet, enough); } // There were not enough resources if (!enough) { scheduleEvent(Cycles(1)); DPRINTF(RubyNetwork, "Can't deliver message since a node " "is blocked\n"); DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr)); break; // go to next incoming port } MsgPtr unmodified_msg_ptr; if (output_links.size() > 1) { // If we are sending this message down more than one link // (size>1), we need to make a copy of the message so each // branch can have a different internal destination we need // to create an unmodified MsgPtr because the MessageBuffer // enqueue func will modify the message // This magic line creates a private copy of the message unmodified_msg_ptr = msg_ptr->clone(); } // Dequeue msg buffer->dequeue(current_time); m_pending_message_count[vnet]--; // Enqueue it - for all outgoing queues for (int i=0; i 0) { // create a private copy of the unmodified message msg_ptr = unmodified_msg_ptr->clone(); } // Change the internal destination set of the message so it // knows which destinations this link is responsible for. net_msg_ptr = msg_ptr.get(); net_msg_ptr->getDestination() = output_link_destinations[i]; // Enqeue msg DPRINTF(RubyNetwork, "Enqueuing net msg from " "inport[%d][%d] to outport [%d][%d].\n", incoming, vnet, outgoing, vnet); m_out[outgoing][vnet]->enqueue(msg_ptr, current_time, m_switch->cyclesToTicks(Cycles(1))); } } } void PerfectSwitch::wakeup() { // Give the highest numbered link priority most of the time m_wakeups_wo_switch++; int highest_prio_vnet = m_virtual_networks-1; int lowest_prio_vnet = 0; int decrementer = 1; // invert priorities to avoid starvation seen in the component network if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) { m_wakeups_wo_switch = 0; highest_prio_vnet = 0; lowest_prio_vnet = m_virtual_networks-1; decrementer = -1; } // For all components incoming queues for (int vnet = highest_prio_vnet; (vnet * decrementer) >= (decrementer * lowest_prio_vnet); vnet -= decrementer) { operateVnet(vnet); } } void PerfectSwitch::storeEventInfo(int info) { m_pending_message_count[info]++; } void PerfectSwitch::clearStats() { } void PerfectSwitch::collateStats() { } void PerfectSwitch::print(std::ostream& out) const { out << "[PerfectSwitch " << m_switch_id << "]"; }