/*
 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "base/cprintf.hh"
#include "mem/protocol/Protocol.hh"
#include "mem/ruby/buffers/MessageBuffer.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/ruby/network/simple/Throttle.hh"
#include "mem/ruby/slicc_interface/NetworkMessage.hh"
#include "mem/ruby/system/System.hh"

using namespace std;

const int HIGH_RANGE = 256;
const int ADJUST_INTERVAL = 50000;
const int MESSAGE_SIZE_MULTIPLIER = 1000;
//const int BROADCAST_SCALING = 4; // Have a 16p system act like a 64p systems
const int BROADCAST_SCALING = 1;
const int PRIORITY_SWITCH_LIMIT = 128;

static int network_message_to_size(NetworkMessage* net_msg_ptr);

extern ostream *debug_cout_ptr;

Throttle::Throttle(int sID, NodeID node, int link_latency,
    int link_bandwidth_multiplier)
{
    init(node, link_latency, link_bandwidth_multiplier);
    m_sID = sID;
}

Throttle::Throttle(NodeID node, int link_latency,
    int link_bandwidth_multiplier)
{
    init(node, link_latency, link_bandwidth_multiplier);
    m_sID = 0;
}

void
Throttle::init(NodeID node, int link_latency, int link_bandwidth_multiplier)
{
    m_node = node;
    m_vnets = 0;

    ASSERT(link_bandwidth_multiplier > 0);
    m_link_bandwidth_multiplier = link_bandwidth_multiplier;
    m_link_latency = link_latency;

    m_wakeups_wo_switch = 0;
    clearStats();
}

void
Throttle::clear()
{
    for (int counter = 0; counter < m_vnets; counter++) {
        m_in[counter]->clear();
        m_out[counter]->clear();
    }
}

void
Throttle::addLinks(const std::vector<MessageBuffer*>& in_vec,
    const std::vector<MessageBuffer*>& out_vec)
{
    assert(in_vec.size() == out_vec.size());
    for (int i=0; i<in_vec.size(); i++) {
        addVirtualNetwork(in_vec[i], out_vec[i]);
    }

    m_message_counters.resize(MessageSizeType_NUM);
    for (int i = 0; i < MessageSizeType_NUM; i++) {
        m_message_counters[i].resize(in_vec.size());
        for (int j = 0; j<m_message_counters[i].size(); j++) {
            m_message_counters[i][j] = 0;
        }
    }
}

void
Throttle::addVirtualNetwork(MessageBuffer* in_ptr, MessageBuffer* out_ptr)
{
    m_units_remaining.push_back(0);
    m_in.push_back(in_ptr);
    m_out.push_back(out_ptr);

    // Set consumer and description
    m_in[m_vnets]->setConsumer(this);
    string desc = "[Queue to Throttle " + NodeIDToString(m_sID) + " " +
        NodeIDToString(m_node) + "]";
    m_in[m_vnets]->setDescription(desc);
    m_vnets++;
}

void
Throttle::wakeup()
{
    // Limits the number of message sent to a limited number of bytes/cycle.
    assert(getLinkBandwidth() > 0);
    int bw_remaining = getLinkBandwidth();

    // Give the highest numbered link priority most of the time
    m_wakeups_wo_switch++;
    int highest_prio_vnet = m_vnets-1;
    int lowest_prio_vnet = 0;
    int counter = 1;
    bool schedule_wakeup = false;

    // invert priorities to avoid starvation seen in the component network
    if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
        m_wakeups_wo_switch = 0;
        highest_prio_vnet = 0;
        lowest_prio_vnet = m_vnets-1;
        counter = -1;
    }

    for (int vnet = highest_prio_vnet;
         (vnet * counter) >= (counter * lowest_prio_vnet);
         vnet -= counter) {

        assert(m_out[vnet] != NULL);
        assert(m_in[vnet] != NULL);
        assert(m_units_remaining[vnet] >= 0);

        while (bw_remaining > 0 &&
            (m_in[vnet]->isReady() || m_units_remaining[vnet] > 0) &&
            m_out[vnet]->areNSlotsAvailable(1)) {

            // See if we are done transferring the previous message on
            // this virtual network
            if (m_units_remaining[vnet] == 0 && m_in[vnet]->isReady()) {
                // Find the size of the message we are moving
                MsgPtr msg_ptr = m_in[vnet]->peekMsgPtr();
                NetworkMessage* net_msg_ptr =
                    safe_cast<NetworkMessage*>(msg_ptr.get());
                m_units_remaining[vnet] +=
                    network_message_to_size(net_msg_ptr);

                DPRINTF(RubyNetwork, "throttle: %d my bw %d bw spent "
                        "enqueueing net msg %d time: %lld.\n",
                        m_node, getLinkBandwidth(), m_units_remaining[vnet],
                        g_eventQueue_ptr->getTime());

                // Move the message
                m_out[vnet]->enqueue(m_in[vnet]->peekMsgPtr(), m_link_latency);
                m_in[vnet]->pop();

                // Count the message
                m_message_counters[net_msg_ptr->getMessageSize()][vnet]++;

                DPRINTF(RubyNetwork, "%s\n", *m_out[vnet]);
            }

            // Calculate the amount of bandwidth we spent on this message
            int diff = m_units_remaining[vnet] - bw_remaining;
            m_units_remaining[vnet] = max(0, diff);
            bw_remaining = max(0, -diff);
        }

        if (bw_remaining > 0 &&
            (m_in[vnet]->isReady() || m_units_remaining[vnet] > 0) &&
            !m_out[vnet]->areNSlotsAvailable(1)) {
            DPRINTF(RubyNetwork, "vnet: %d", vnet);
            // schedule me to wakeup again because I'm waiting for my
            // output queue to become available
            schedule_wakeup = true;
        }
    }

    // We should only wake up when we use the bandwidth
    // This is only mostly true
    // assert(bw_remaining != getLinkBandwidth());

    // Record that we used some or all of the link bandwidth this cycle
    double ratio = 1.0 - (double(bw_remaining) / double(getLinkBandwidth()));

    // If ratio = 0, we used no bandwidth, if ratio = 1, we used all
    linkUtilized(ratio);

    if (bw_remaining > 0 && !schedule_wakeup) {
        // We have extra bandwidth and our output buffer was
        // available, so we must not have anything else to do until
        // another message arrives.
        DPRINTF(RubyNetwork, "%s not scheduled again\n", *this);
    } else {
        DPRINTF(RubyNetwork, "%s scheduled again\n", *this);

        // We are out of bandwidth for this cycle, so wakeup next
        // cycle and continue
        g_eventQueue_ptr->scheduleEvent(this, 1);
    }
}

void
Throttle::printStats(ostream& out) const
{
    out << "utilized_percent: " << getUtilization() << endl;
}

void
Throttle::clearStats()
{
    m_ruby_start = g_eventQueue_ptr->getTime();
    m_links_utilized = 0.0;

    for (int i = 0; i < m_message_counters.size(); i++) {
        for (int j = 0; j < m_message_counters[i].size(); j++) {
            m_message_counters[i][j] = 0;
        }
    }
}

void
Throttle::printConfig(ostream& out) const
{
}

double
Throttle::getUtilization() const
{
    return 100.0 * double(m_links_utilized) /
        double(g_eventQueue_ptr->getTime()-m_ruby_start);
}

void
Throttle::print(ostream& out) const
{
    out << "[Throttle: " << m_sID << " " << m_node
        << " bw: " << getLinkBandwidth() << "]";
}

int
network_message_to_size(NetworkMessage* net_msg_ptr)
{
    assert(net_msg_ptr != NULL);

    int size = RubySystem::getNetwork()->
        MessageSizeType_to_int(net_msg_ptr->getMessageSize());
    size *=  MESSAGE_SIZE_MULTIPLIER;

    // Artificially increase the size of broadcast messages
    if (BROADCAST_SCALING > 1 && net_msg_ptr->getDestination().isBroadcast())
        size *= BROADCAST_SCALING;

    return size;
}