/* * Copyright (c) 1999-2013 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ machine(MachineType:Directory, "MESI Two Level directory protocol") : DirectoryMemory * directory; Cycles to_mem_ctrl_latency := 1; Cycles directory_latency := 6; MessageBuffer * requestToDir, network="From", virtual_network="0", vnet_type="request"; MessageBuffer * responseToDir, network="From", virtual_network="1", vnet_type="response"; MessageBuffer * responseFromDir, network="To", virtual_network="1", vnet_type="response"; MessageBuffer * responseFromMemory; { // STATES state_declaration(State, desc="Directory states", default="Directory_State_I") { // Base states I, AccessPermission:Read_Write, desc="dir is the owner and memory is up-to-date, all other copies are Invalid"; ID, AccessPermission:Busy, desc="Intermediate state for DMA_READ when in I"; ID_W, AccessPermission:Busy, desc="Intermediate state for DMA_WRITE when in I"; M, AccessPermission:Maybe_Stale, desc="memory copy may be stale, i.e. other modified copies may exist"; IM, AccessPermission:Busy, desc="Intermediate State I>M"; MI, AccessPermission:Busy, desc="Intermediate State M>I"; M_DRD, AccessPermission:Busy, desc="Intermediate State when there is a dma read"; M_DRDI, AccessPermission:Busy, desc="Intermediate State when there is a dma read"; M_DWR, AccessPermission:Busy, desc="Intermediate State when there is a dma write"; M_DWRI, AccessPermission:Busy, desc="Intermediate State when there is a dma write"; } // Events enumeration(Event, desc="Directory events") { Fetch, desc="A memory fetch arrives"; Data, desc="writeback data arrives"; Memory_Data, desc="Fetched data from memory arrives"; Memory_Ack, desc="Writeback Ack from memory arrives"; //added by SS for dma DMA_READ, desc="A DMA Read memory request"; DMA_WRITE, desc="A DMA Write memory request"; CleanReplacement, desc="Clean Replacement in L2 cache"; } // TYPES // DirectoryEntry structure(Entry, desc="...", interface="AbstractCacheEntry", main="false") { State DirectoryState, desc="Directory state"; MachineID Owner; } // TBE entries for DMA requests structure(TBE, desc="TBE entries for outstanding DMA requests") { Addr PhysicalAddress, desc="physical address"; State TBEState, desc="Transient State"; DataBlock DataBlk, desc="Data to be written (DMA write only)"; int Len, desc="..."; MachineID Requestor, desc="The DMA engine that sent the request"; } structure(TBETable, external="yes") { TBE lookup(Addr); void allocate(Addr); void deallocate(Addr); bool isPresent(Addr); bool functionalRead(Packet *pkt); int functionalWrite(Packet *pkt); } // ** OBJECTS ** TBETable TBEs, template="", constructor="m_number_of_TBEs"; Tick clockEdge(); Tick cyclesToTicks(Cycles c); void set_tbe(TBE tbe); void unset_tbe(); void wakeUpBuffers(Addr a); Entry getDirectoryEntry(Addr addr), return_by_pointer="yes" { Entry dir_entry := static_cast(Entry, "pointer", directory[addr]); if (is_valid(dir_entry)) { return dir_entry; } dir_entry := static_cast(Entry, "pointer", directory.allocate(addr, new Entry)); return dir_entry; } State getState(TBE tbe, Addr addr) { if (is_valid(tbe)) { return tbe.TBEState; } else if (directory.isPresent(addr)) { return getDirectoryEntry(addr).DirectoryState; } else { return State:I; } } void setState(TBE tbe, Addr addr, State state) { if (is_valid(tbe)) { tbe.TBEState := state; } if (directory.isPresent(addr)) { getDirectoryEntry(addr).DirectoryState := state; } } AccessPermission getAccessPermission(Addr addr) { TBE tbe := TBEs[addr]; if(is_valid(tbe)) { DPRINTF(RubySlicc, "%s\n", Directory_State_to_permission(tbe.TBEState)); return Directory_State_to_permission(tbe.TBEState); } if(directory.isPresent(addr)) { DPRINTF(RubySlicc, "%s\n", Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState)); return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState); } DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent); return AccessPermission:NotPresent; } void functionalRead(Addr addr, Packet *pkt) { TBE tbe := TBEs[addr]; if(is_valid(tbe)) { testAndRead(addr, tbe.DataBlk, pkt); } else { functionalMemoryRead(pkt); } } int functionalWrite(Addr addr, Packet *pkt) { int num_functional_writes := 0; TBE tbe := TBEs[addr]; if(is_valid(tbe)) { num_functional_writes := num_functional_writes + testAndWrite(addr, tbe.DataBlk, pkt); } num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt); return num_functional_writes; } void setAccessPermission(Addr addr, State state) { if (directory.isPresent(addr)) { getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state)); } } bool isGETRequest(CoherenceRequestType type) { return (type == CoherenceRequestType:GETS) || (type == CoherenceRequestType:GET_INSTR) || (type == CoherenceRequestType:GETX); } // ** OUT_PORTS ** out_port(responseNetwork_out, ResponseMsg, responseFromDir); // ** IN_PORTS ** in_port(requestNetwork_in, RequestMsg, requestToDir, rank = 0) { if (requestNetwork_in.isReady(clockEdge())) { peek(requestNetwork_in, RequestMsg) { assert(in_msg.Destination.isElement(machineID)); if (isGETRequest(in_msg.Type)) { trigger(Event:Fetch, in_msg.addr, TBEs[in_msg.addr]); } else if (in_msg.Type == CoherenceRequestType:DMA_READ) { trigger(Event:DMA_READ, makeLineAddress(in_msg.addr), TBEs[makeLineAddress(in_msg.addr)]); } else if (in_msg.Type == CoherenceRequestType:DMA_WRITE) { trigger(Event:DMA_WRITE, makeLineAddress(in_msg.addr), TBEs[makeLineAddress(in_msg.addr)]); } else { DPRINTF(RubySlicc, "%s\n", in_msg); error("Invalid message"); } } } } in_port(responseNetwork_in, ResponseMsg, responseToDir, rank = 1) { if (responseNetwork_in.isReady(clockEdge())) { peek(responseNetwork_in, ResponseMsg) { assert(in_msg.Destination.isElement(machineID)); if (in_msg.Type == CoherenceResponseType:MEMORY_DATA) { trigger(Event:Data, in_msg.addr, TBEs[in_msg.addr]); } else if (in_msg.Type == CoherenceResponseType:ACK) { trigger(Event:CleanReplacement, in_msg.addr, TBEs[in_msg.addr]); } else { DPRINTF(RubySlicc, "%s\n", in_msg.Type); error("Invalid message"); } } } } // off-chip memory request/response is done in_port(memQueue_in, MemoryMsg, responseFromMemory, rank = 2) { if (memQueue_in.isReady(clockEdge())) { peek(memQueue_in, MemoryMsg) { if (in_msg.Type == MemoryRequestType:MEMORY_READ) { trigger(Event:Memory_Data, in_msg.addr, TBEs[in_msg.addr]); } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) { trigger(Event:Memory_Ack, in_msg.addr, TBEs[in_msg.addr]); } else { DPRINTF(RubySlicc, "%s\n", in_msg.Type); error("Invalid message"); } } } } // Actions action(a_sendAck, "a", desc="Send ack to L2") { peek(responseNetwork_in, ResponseMsg) { enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:MEMORY_ACK; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Sender); out_msg.MessageSize := MessageSizeType:Response_Control; } } } action(d_sendData, "d", desc="Send data to requestor") { peek(memQueue_in, MemoryMsg) { enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:MEMORY_DATA; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.OriginalRequestorMachId); out_msg.DataBlk := in_msg.DataBlk; out_msg.Dirty := false; out_msg.MessageSize := MessageSizeType:Response_Data; Entry e := getDirectoryEntry(in_msg.addr); e.Owner := in_msg.OriginalRequestorMachId; } } } // Actions action(aa_sendAck, "aa", desc="Send ack to L2") { peek(memQueue_in, MemoryMsg) { enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:MEMORY_ACK; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.OriginalRequestorMachId); out_msg.MessageSize := MessageSizeType:Response_Control; } } } action(j_popIncomingRequestQueue, "j", desc="Pop incoming request queue") { requestNetwork_in.dequeue(clockEdge()); } action(k_popIncomingResponseQueue, "k", desc="Pop incoming request queue") { responseNetwork_in.dequeue(clockEdge()); } action(l_popMemQueue, "q", desc="Pop off-chip request queue") { memQueue_in.dequeue(clockEdge()); } action(kd_wakeUpDependents, "kd", desc="wake-up dependents") { wakeUpBuffers(address); } action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") { peek(requestNetwork_in, RequestMsg) { queueMemoryRead(in_msg.Requestor, address, to_mem_ctrl_latency); } } action(qw_queueMemoryWBRequest, "qw", desc="Queue off-chip writeback request") { peek(responseNetwork_in, ResponseMsg) { queueMemoryWrite(in_msg.Sender, address, to_mem_ctrl_latency, in_msg.DataBlk); } } //added by SS for dma action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") { peek(requestNetwork_in, RequestMsg) { queueMemoryRead(in_msg.Requestor, address, to_mem_ctrl_latency); } } action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") { requestNetwork_in.dequeue(clockEdge()); } action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") { peek(memQueue_in, MemoryMsg) { enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) { assert(is_valid(tbe)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be out_msg.Destination.add(tbe.Requestor); out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") { peek(requestNetwork_in, RequestMsg) { queueMemoryWritePartial(machineID, address, to_mem_ctrl_latency, in_msg.DataBlk, in_msg.Len); } } action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") { enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) { assert(is_valid(tbe)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:ACK; out_msg.Destination.add(tbe.Requestor); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } action(z_stallAndWaitRequest, "z", desc="recycle request queue") { stall_and_wait(requestNetwork_in, address); } action(zz_recycleDMAQueue, "zz", desc="recycle DMA queue") { requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") { peek(requestNetwork_in, RequestMsg) { enqueue(responseNetwork_out, ResponseMsg, directory_latency) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:INV; out_msg.Sender := machineID; out_msg.Destination.add(getDirectoryEntry(address).Owner); out_msg.MessageSize := MessageSizeType:Response_Control; } } } action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") { peek(responseNetwork_in, ResponseMsg) { enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) { assert(is_valid(tbe)); out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be out_msg.Destination.add(tbe.Requestor); out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(v_allocateTBE, "v", desc="Allocate TBE") { peek(requestNetwork_in, RequestMsg) { TBEs.allocate(address); set_tbe(TBEs[address]); tbe.DataBlk := in_msg.DataBlk; tbe.PhysicalAddress := in_msg.addr; tbe.Len := in_msg.Len; tbe.Requestor := in_msg.Requestor; } } action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") { peek(responseNetwork_in, ResponseMsg) { queueMemoryWritePartial(in_msg.Sender, tbe.PhysicalAddress, to_mem_ctrl_latency, tbe.DataBlk, tbe.Len); } } action(w_deallocateTBE, "w", desc="Deallocate TBE") { TBEs.deallocate(address); unset_tbe(); } // TRANSITIONS transition(I, Fetch, IM) { qf_queueMemoryFetchRequest; j_popIncomingRequestQueue; } transition(M, Fetch) { inv_sendCacheInvalidate; z_stallAndWaitRequest; } transition(IM, Memory_Data, M) { d_sendData; l_popMemQueue; kd_wakeUpDependents; } //added by SS transition(M, CleanReplacement, I) { a_sendAck; k_popIncomingResponseQueue; kd_wakeUpDependents; } transition(M, Data, MI) { qw_queueMemoryWBRequest; k_popIncomingResponseQueue; } transition(MI, Memory_Ack, I) { aa_sendAck; l_popMemQueue; kd_wakeUpDependents; } //added by SS for dma support transition(I, DMA_READ, ID) { v_allocateTBE; qf_queueMemoryFetchRequestDMA; j_popIncomingRequestQueue; } transition(ID, Memory_Data, I) { dr_sendDMAData; w_deallocateTBE; l_popMemQueue; kd_wakeUpDependents; } transition(I, DMA_WRITE, ID_W) { v_allocateTBE; qw_queueMemoryWBRequest_partial; j_popIncomingRequestQueue; } transition(ID_W, Memory_Ack, I) { da_sendDMAAck; w_deallocateTBE; l_popMemQueue; kd_wakeUpDependents; } transition({ID, ID_W, M_DRDI, M_DWRI, IM, MI}, {Fetch, Data} ) { z_stallAndWaitRequest; } transition({ID, ID_W, M_DRD, M_DRDI, M_DWR, M_DWRI, IM, MI}, {DMA_WRITE, DMA_READ} ) { zz_recycleDMAQueue; } transition(M, DMA_READ, M_DRD) { v_allocateTBE; inv_sendCacheInvalidate; j_popIncomingRequestQueue; } transition(M_DRD, Data, M_DRDI) { drp_sendDMAData; w_deallocateTBE; qw_queueMemoryWBRequest; k_popIncomingResponseQueue; } transition(M_DRDI, Memory_Ack, I) { aa_sendAck; l_popMemQueue; kd_wakeUpDependents; } transition(M, DMA_WRITE, M_DWR) { v_allocateTBE; inv_sendCacheInvalidate; j_popIncomingRequestQueue; } transition(M_DWR, Data, M_DWRI) { qw_queueMemoryWBRequest_partialTBE; k_popIncomingResponseQueue; } transition(M_DWRI, Memory_Ack, I) { aa_sendAck; da_sendDMAAck; w_deallocateTBE; l_popMemQueue; kd_wakeUpDependents; } }