/* * Copyright (c) 2009-2012 Mark D. Hill and David A. Wood * Copyright (c) 2010-2012 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ machine(MachineType:Directory, "Directory protocol") : DirectoryMemory * directory; Cycles directory_latency := 12; Cycles to_memory_controller_latency := 1; MessageBuffer * forwardFromDir, network="To", virtual_network="3", vnet_type="forward"; MessageBuffer * responseFromDir, network="To", virtual_network="4", vnet_type="response"; MessageBuffer * dmaResponseFromDir, network="To", virtual_network="1", vnet_type="response"; MessageBuffer * requestToDir, network="From", virtual_network="2", vnet_type="request"; MessageBuffer * dmaRequestToDir, network="From", virtual_network="0", vnet_type="request"; MessageBuffer * responseFromMemory; { // STATES state_declaration(State, desc="Directory states", default="Directory_State_I") { // Base states I, AccessPermission:Read_Write, desc="Invalid"; M, AccessPermission:Invalid, desc="Modified"; M_DRD, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA read"; M_DWR, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA write"; M_DWRI, AccessPermission:Busy, desc="Intermediate state M_DWR-->I"; M_DRDI, AccessPermission:Busy, desc="Intermediate state M_DRD-->I"; IM, AccessPermission:Busy, desc="Intermediate state I-->M"; MI, AccessPermission:Busy, desc="Intermediate state M-->I"; ID, AccessPermission:Busy, desc="Intermediate state for DMA_READ when in I"; ID_W, AccessPermission:Busy, desc="Intermediate state for DMA_WRITE when in I"; } // Events enumeration(Event, desc="Directory events") { // processor requests GETX, desc="A GETX arrives"; GETS, desc="A GETS arrives"; PUTX, desc="A PUTX arrives"; PUTX_NotOwner, desc="A PUTX arrives"; // DMA requests DMA_READ, desc="A DMA Read memory request"; DMA_WRITE, desc="A DMA Write memory request"; // Memory Controller Memory_Data, desc="Fetched data from memory arrives"; Memory_Ack, desc="Writeback Ack from memory arrives"; } // TYPES // DirectoryEntry structure(Entry, desc="...", interface="AbstractCacheEntry", main="false") { State DirectoryState, desc="Directory state"; NetDest Sharers, desc="Sharers for this block"; NetDest Owner, desc="Owner of this block"; } // TBE entries for DMA requests structure(TBE, desc="TBE entries for outstanding DMA requests") { Addr PhysicalAddress, desc="physical address"; State TBEState, desc="Transient State"; DataBlock DataBlk, desc="Data to be written (DMA write only)"; int Len, desc="..."; MachineID DmaRequestor, desc="DMA requestor"; } structure(TBETable, external="yes") { TBE lookup(Addr); void allocate(Addr); void deallocate(Addr); bool isPresent(Addr); } // ** OBJECTS ** TBETable TBEs, template="", constructor="m_number_of_TBEs"; Tick clockEdge(); Cycles ticksToCycles(Tick t); Tick cyclesToTicks(Cycles c); void set_tbe(TBE b); void unset_tbe(); Entry getDirectoryEntry(Addr addr), return_by_pointer="yes" { Entry dir_entry := static_cast(Entry, "pointer", directory[addr]); if (is_valid(dir_entry)) { return dir_entry; } dir_entry := static_cast(Entry, "pointer", directory.allocate(addr, new Entry)); return dir_entry; } State getState(TBE tbe, Addr addr) { if (is_valid(tbe)) { return tbe.TBEState; } else if (directory.isPresent(addr)) { return getDirectoryEntry(addr).DirectoryState; } else { return State:I; } } void setState(TBE tbe, Addr addr, State state) { if (is_valid(tbe)) { tbe.TBEState := state; } if (directory.isPresent(addr)) { if (state == State:M) { assert(getDirectoryEntry(addr).Owner.count() == 1); assert(getDirectoryEntry(addr).Sharers.count() == 0); } getDirectoryEntry(addr).DirectoryState := state; if (state == State:I) { assert(getDirectoryEntry(addr).Owner.count() == 0); assert(getDirectoryEntry(addr).Sharers.count() == 0); } } } AccessPermission getAccessPermission(Addr addr) { TBE tbe := TBEs[addr]; if(is_valid(tbe)) { return Directory_State_to_permission(tbe.TBEState); } if(directory.isPresent(addr)) { return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState); } return AccessPermission:NotPresent; } void setAccessPermission(Addr addr, State state) { if (directory.isPresent(addr)) { getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state)); } } void functionalRead(Addr addr, Packet *pkt) { TBE tbe := TBEs[addr]; if(is_valid(tbe)) { testAndRead(addr, tbe.DataBlk, pkt); } else { functionalMemoryRead(pkt); } } int functionalWrite(Addr addr, Packet *pkt) { int num_functional_writes := 0; TBE tbe := TBEs[addr]; if(is_valid(tbe)) { num_functional_writes := num_functional_writes + testAndWrite(addr, tbe.DataBlk, pkt); } num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt); return num_functional_writes; } // ** OUT_PORTS ** out_port(forwardNetwork_out, RequestMsg, forwardFromDir); out_port(responseNetwork_out, ResponseMsg, responseFromDir); out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaResponseFromDir); // ** IN_PORTS ** in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) { if (dmaRequestQueue_in.isReady(clockEdge())) { peek(dmaRequestQueue_in, DMARequestMsg) { TBE tbe := TBEs[in_msg.LineAddress]; if (in_msg.Type == DMARequestType:READ) { trigger(Event:DMA_READ, in_msg.LineAddress, tbe); } else if (in_msg.Type == DMARequestType:WRITE) { trigger(Event:DMA_WRITE, in_msg.LineAddress, tbe); } else { error("Invalid message"); } } } } in_port(requestQueue_in, RequestMsg, requestToDir) { if (requestQueue_in.isReady(clockEdge())) { peek(requestQueue_in, RequestMsg) { TBE tbe := TBEs[in_msg.addr]; if (in_msg.Type == CoherenceRequestType:GETS) { trigger(Event:GETS, in_msg.addr, tbe); } else if (in_msg.Type == CoherenceRequestType:GETX) { trigger(Event:GETX, in_msg.addr, tbe); } else if (in_msg.Type == CoherenceRequestType:PUTX) { if (getDirectoryEntry(in_msg.addr).Owner.isElement(in_msg.Requestor)) { trigger(Event:PUTX, in_msg.addr, tbe); } else { trigger(Event:PUTX_NotOwner, in_msg.addr, tbe); } } else { error("Invalid message"); } } } } //added by SS // off-chip memory request/response is done in_port(memQueue_in, MemoryMsg, responseFromMemory) { if (memQueue_in.isReady(clockEdge())) { peek(memQueue_in, MemoryMsg) { TBE tbe := TBEs[in_msg.addr]; if (in_msg.Type == MemoryRequestType:MEMORY_READ) { trigger(Event:Memory_Data, in_msg.addr, tbe); } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) { trigger(Event:Memory_Ack, in_msg.addr, tbe); } else { DPRINTF(RubySlicc,"%s\n", in_msg.Type); error("Invalid message"); } } } } // Actions action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") { peek(requestQueue_in, RequestMsg) { enqueue(forwardNetwork_out, RequestMsg, directory_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:WB_ACK; out_msg.Requestor := in_msg.Requestor; out_msg.Destination.add(in_msg.Requestor); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(l_sendWriteBackAck, "la", desc="Send writeback ack to requestor") { peek(memQueue_in, MemoryMsg) { enqueue(forwardNetwork_out, RequestMsg, 1) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:WB_ACK; out_msg.Requestor := in_msg.OriginalRequestorMachId; out_msg.Destination.add(in_msg.OriginalRequestorMachId); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") { peek(requestQueue_in, RequestMsg) { enqueue(forwardNetwork_out, RequestMsg, directory_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:WB_NACK; out_msg.Requestor := in_msg.Requestor; out_msg.Destination.add(in_msg.Requestor); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(c_clearOwner, "c", desc="Clear the owner field") { getDirectoryEntry(address).Owner.clear(); } action(d_sendData, "d", desc="Send data to requestor") { peek(memQueue_in, MemoryMsg) { enqueue(responseNetwork_out, ResponseMsg, 1) { out_msg.addr := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.OriginalRequestorMachId); out_msg.DataBlk := in_msg.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") { peek(memQueue_in, MemoryMsg) { enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) { assert(is_valid(tbe)); out_msg.PhysicalAddress := address; out_msg.LineAddress := address; out_msg.Type := DMAResponseType:DATA; out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be out_msg.Destination.add(tbe.DmaRequestor); out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") { peek(requestQueue_in, RequestMsg) { enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) { assert(is_valid(tbe)); out_msg.PhysicalAddress := address; out_msg.LineAddress := address; out_msg.Type := DMAResponseType:DATA; // we send the entire data block and rely on the dma controller // to split it up if need be out_msg.DataBlk := in_msg.DataBlk; out_msg.Destination.add(tbe.DmaRequestor); out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") { enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) { assert(is_valid(tbe)); out_msg.PhysicalAddress := address; out_msg.LineAddress := address; out_msg.Type := DMAResponseType:ACK; out_msg.Destination.add(tbe.DmaRequestor); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } action(e_ownerIsRequestor, "e", desc="The owner is now the requestor") { peek(requestQueue_in, RequestMsg) { getDirectoryEntry(address).Owner.clear(); getDirectoryEntry(address).Owner.add(in_msg.Requestor); } } action(f_forwardRequest, "f", desc="Forward request to owner") { peek(requestQueue_in, RequestMsg) { APPEND_TRANSITION_COMMENT("Own: "); APPEND_TRANSITION_COMMENT(getDirectoryEntry(in_msg.addr).Owner); APPEND_TRANSITION_COMMENT("Req: "); APPEND_TRANSITION_COMMENT(in_msg.Requestor); enqueue(forwardNetwork_out, RequestMsg, directory_latency) { out_msg.addr := address; out_msg.Type := in_msg.Type; out_msg.Requestor := in_msg.Requestor; out_msg.Destination := getDirectoryEntry(in_msg.addr).Owner; out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") { peek(dmaRequestQueue_in, DMARequestMsg) { enqueue(forwardNetwork_out, RequestMsg, directory_latency) { out_msg.addr := address; out_msg.Type := CoherenceRequestType:INV; out_msg.Requestor := machineID; out_msg.Destination := getDirectoryEntry(in_msg.PhysicalAddress).Owner; out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") { requestQueue_in.dequeue(clockEdge()); } action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") { dmaRequestQueue_in.dequeue(clockEdge()); } action(v_allocateTBE, "v", desc="Allocate TBE") { peek(dmaRequestQueue_in, DMARequestMsg) { TBEs.allocate(address); set_tbe(TBEs[address]); tbe.DataBlk := in_msg.DataBlk; tbe.PhysicalAddress := in_msg.PhysicalAddress; tbe.Len := in_msg.Len; tbe.DmaRequestor := in_msg.Requestor; } } action(r_allocateTbeForDmaRead, "\r", desc="Allocate TBE for DMA Read") { peek(dmaRequestQueue_in, DMARequestMsg) { TBEs.allocate(address); set_tbe(TBEs[address]); tbe.DmaRequestor := in_msg.Requestor; } } action(v_allocateTBEFromRequestNet, "\v", desc="Allocate TBE") { peek(requestQueue_in, RequestMsg) { TBEs.allocate(address); set_tbe(TBEs[address]); tbe.DataBlk := in_msg.DataBlk; } } action(w_deallocateTBE, "w", desc="Deallocate TBE") { TBEs.deallocate(address); unset_tbe(); } action(z_recycleRequestQueue, "z", desc="recycle request queue") { requestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(y_recycleDMARequestQueue, "y", desc="recycle dma request queue") { dmaRequestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency)); } action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") { peek(requestQueue_in, RequestMsg) { queueMemoryRead(in_msg.Requestor, address, to_memory_controller_latency); } } action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") { peek(dmaRequestQueue_in, DMARequestMsg) { queueMemoryRead(in_msg.Requestor, address, to_memory_controller_latency); } } action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") { peek(dmaRequestQueue_in, DMARequestMsg) { queueMemoryWritePartial(in_msg.Requestor, address, to_memory_controller_latency, in_msg.DataBlk, in_msg.Len); } } action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") { peek(requestQueue_in, RequestMsg) { queueMemoryWritePartial(in_msg.Requestor, address, to_memory_controller_latency, tbe.DataBlk, tbe.Len); } } action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") { peek(requestQueue_in, RequestMsg) { queueMemoryWrite(in_msg.Requestor, address, to_memory_controller_latency, in_msg.DataBlk); } } action(l_popMemQueue, "q", desc="Pop off-chip request queue") { memQueue_in.dequeue(clockEdge()); } // TRANSITIONS transition({M_DRD, M_DWR, M_DWRI, M_DRDI}, GETX) { z_recycleRequestQueue; } transition({IM, MI, ID, ID_W}, {GETX, GETS, PUTX, PUTX_NotOwner} ) { z_recycleRequestQueue; } transition({IM, MI, ID, ID_W}, {DMA_READ, DMA_WRITE} ) { y_recycleDMARequestQueue; } transition(I, GETX, IM) { //d_sendData; v_allocateTBEFromRequestNet; qf_queueMemoryFetchRequest; e_ownerIsRequestor; i_popIncomingRequestQueue; } transition(IM, Memory_Data, M) { d_sendData; //e_ownerIsRequestor; w_deallocateTBE; l_popMemQueue; } transition(I, DMA_READ, ID) { //dr_sendDMAData; r_allocateTbeForDmaRead; qf_queueMemoryFetchRequestDMA; p_popIncomingDMARequestQueue; } transition(ID, Memory_Data, I) { dr_sendDMAData; //p_popIncomingDMARequestQueue; w_deallocateTBE; l_popMemQueue; } transition(I, DMA_WRITE, ID_W) { v_allocateTBE; qw_queueMemoryWBRequest_partial; p_popIncomingDMARequestQueue; } transition(ID_W, Memory_Ack, I) { da_sendDMAAck; w_deallocateTBE; l_popMemQueue; } transition(M, DMA_READ, M_DRD) { v_allocateTBE; inv_sendCacheInvalidate; p_popIncomingDMARequestQueue; } transition(M_DRD, PUTX, M_DRDI) { drp_sendDMAData; c_clearOwner; l_queueMemoryWBRequest; i_popIncomingRequestQueue; } transition(M_DRDI, Memory_Ack, I) { l_sendWriteBackAck; w_deallocateTBE; l_popMemQueue; } transition(M, DMA_WRITE, M_DWR) { v_allocateTBE; inv_sendCacheInvalidate; p_popIncomingDMARequestQueue; } transition(M_DWR, PUTX, M_DWRI) { qw_queueMemoryWBRequest_partialTBE; c_clearOwner; i_popIncomingRequestQueue; } transition(M_DWRI, Memory_Ack, I) { l_sendWriteBackAck; da_sendDMAAck; w_deallocateTBE; l_popMemQueue; } transition(M, GETX, M) { f_forwardRequest; e_ownerIsRequestor; i_popIncomingRequestQueue; } transition(M, PUTX, MI) { c_clearOwner; v_allocateTBEFromRequestNet; l_queueMemoryWBRequest; i_popIncomingRequestQueue; } transition(MI, Memory_Ack, I) { l_sendWriteBackAck; w_deallocateTBE; l_popMemQueue; } transition(M, PUTX_NotOwner, M) { b_sendWriteBackNack; i_popIncomingRequestQueue; } transition(I, PUTX_NotOwner, I) { b_sendWriteBackNack; i_popIncomingRequestQueue; } }