/* * Copyright (c) 2017 ARM Limited * All rights reserved. * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mem/ruby/slicc_interface/AbstractController.hh" #include "debug/RubyQueue.hh" #include "debug/MemSpecBuffer.hh" #include "mem/protocol/MemoryMsg.hh" #include "mem/ruby/network/Network.hh" #include "mem/ruby/system/GPUCoalescer.hh" #include "mem/ruby/system/RubySystem.hh" #include "mem/ruby/system/Sequencer.hh" #include "sim/system.hh" AbstractController::AbstractController(const Params *p) : MemObject(p), Consumer(this), m_version(p->version), m_clusterID(p->cluster_id), m_masterId(p->system->getMasterId(this)), m_is_blocking(false), m_number_of_TBEs(p->number_of_TBEs), m_transitions_per_cycle(p->transitions_per_cycle), m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency), memoryPort(csprintf("%s.memory", name()), this, ""), addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()) { if (m_version == 0) { // Combine the statistics from all controllers // of this particular type. Stats::registerDumpCallback(new StatsCallback(this)); } } void AbstractController::init() { params()->ruby_system->registerAbstractController(this); m_delayHistogram.init(10); uint32_t size = Network::getNumberOfVirtualNetworks(); for (uint32_t i = 0; i < size; i++) { m_delayVCHistogram.push_back(new Stats::Histogram()); m_delayVCHistogram[i]->init(10); } } void AbstractController::resetStats() { m_delayHistogram.reset(); uint32_t size = Network::getNumberOfVirtualNetworks(); for (uint32_t i = 0; i < size; i++) { m_delayVCHistogram[i]->reset(); } } void AbstractController::regStats() { MemObject::regStats(); m_fully_busy_cycles .name(name() + ".fully_busy_cycles") .desc("cycles for which number of transistions == max transitions") .flags(Stats::nozero); m_expose_hits .name(name() + ".expose_hits") .desc("number of expose hits at LLC spec buffer") .flags(Stats::nozero); m_expose_misses .name(name() + ".expose_misses") .desc("number of expose misses at LLC spec buffer") .flags(Stats::nozero); } void AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay) { assert(virtualNetwork < m_delayVCHistogram.size()); m_delayHistogram.sample(delay); m_delayVCHistogram[virtualNetwork]->sample(delay); } void AbstractController::stallBuffer(MessageBuffer* buf, Addr addr) { if (m_waiting_buffers.count(addr) == 0) { MsgVecType* msgVec = new MsgVecType; msgVec->resize(m_in_ports, NULL); m_waiting_buffers[addr] = msgVec; } DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port, addr); assert(m_in_ports > m_cur_in_port); (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf; } void AbstractController::wakeUpBuffers(Addr addr) { if (m_waiting_buffers.count(addr) > 0) { // // Wake up all possible lower rank (i.e. lower priority) buffers that could // be waiting on this message. // for (int in_port_rank = m_cur_in_port - 1; in_port_rank >= 0; in_port_rank--) { if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { (*(m_waiting_buffers[addr]))[in_port_rank]-> reanalyzeMessages(addr, clockEdge()); } } delete m_waiting_buffers[addr]; m_waiting_buffers.erase(addr); } } void AbstractController::wakeUpAllBuffers(Addr addr) { if (m_waiting_buffers.count(addr) > 0) { // // Wake up all possible lower rank (i.e. lower priority) buffers that could // be waiting on this message. // for (int in_port_rank = m_in_ports - 1; in_port_rank >= 0; in_port_rank--) { if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { (*(m_waiting_buffers[addr]))[in_port_rank]-> reanalyzeMessages(addr, clockEdge()); } } delete m_waiting_buffers[addr]; m_waiting_buffers.erase(addr); } } void AbstractController::wakeUpAllBuffers() { // // Wake up all possible buffers that could be waiting on any message. // std::vector wokeUpMsgVecs; MsgBufType wokeUpMsgBufs; if (m_waiting_buffers.size() > 0) { for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin(); buf_iter != m_waiting_buffers.end(); ++buf_iter) { for (MsgVecType::iterator vec_iter = buf_iter->second->begin(); vec_iter != buf_iter->second->end(); ++vec_iter) { // // Make sure the MessageBuffer has not already be reanalyzed // if (*vec_iter != NULL && (wokeUpMsgBufs.count(*vec_iter) == 0)) { (*vec_iter)->reanalyzeAllMessages(clockEdge()); wokeUpMsgBufs.insert(*vec_iter); } } wokeUpMsgVecs.push_back(buf_iter->second); } for (std::vector::iterator wb_iter = wokeUpMsgVecs.begin(); wb_iter != wokeUpMsgVecs.end(); ++wb_iter) { delete (*wb_iter); } m_waiting_buffers.clear(); } } void AbstractController::blockOnQueue(Addr addr, MessageBuffer* port) { m_is_blocking = true; m_block_map[addr] = port; } bool AbstractController::isBlocked(Addr addr) const { return m_is_blocking && (m_block_map.find(addr) != m_block_map.end()); } void AbstractController::unblock(Addr addr) { m_block_map.erase(addr); if (m_block_map.size() == 0) { m_is_blocking = false; } } bool AbstractController::isBlocked(Addr addr) { return (m_block_map.count(addr) > 0); } BaseMasterPort & AbstractController::getMasterPort(const std::string &if_name, PortID idx) { return memoryPort; } void AbstractController::queueMemoryRead(const MachineID &id, Addr addr, Cycles latency, MachineID origin, int idx, int type) { int coreId = origin.num; int sbeId = idx; // type 0: non-spec 1: spec 2: expose // DPRINTFR(MemSpecBuffer, "%10s MemRead (core=%d, type=%d, idx=%d, addr=%#x)\n", curTick(), coreId, type, sbeId, printAddress(addr)); // if idx == -1, it is a write request which cannot be spec or expose. assert(!(type != 0 && sbeId == -1)); assert(sbeId >= -1 && sbeId <= 65); assert(coreId < 8); assert(type >=0 && type <= 2); if (type == 0) { for (int c = 0; c < 8; ++c) { for (int i = 0; i < 66; ++i) { if (m_specBuf[c][i].address == addr) { DPRINTFR(MemSpecBuffer, "%10s Cleared by Read (core=%d, type=%d, idx=%d, addr=%#x)\n", curTick(), c, type, i, printAddress(addr)); m_specBuf[c][i].address = 0; m_specBuf[c][i].data.clear(); } } } } else if (type == 1) { } else if (type == 2) { if (m_specBuf[coreId][sbeId].address == addr) { DPRINTFR(MemSpecBuffer, "%10s Expose Hit (core=%d, type=%d, idx=%d, addr=%#x)\n", curTick(), coreId, type, sbeId, printAddress(addr)); ++m_expose_hits; assert(getMemoryQueue()); std::shared_ptr msg = std::make_shared(clockEdge()); (*msg).m_addr = addr; (*msg).m_Sender = m_machineID; (*msg).m_OriginalRequestorMachId = id; (*msg).m_Type = MemoryRequestType_MEMORY_READ; (*msg).m_MessageSize = MessageSizeType_Response_Data; (*msg).m_DataBlk = m_specBuf[coreId][sbeId].data; getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1))); for (int c = 0; c < 8; ++c) { for (int i = 0; i < 66; ++i) { if (m_specBuf[c][i].address == addr) { DPRINTFR(MemSpecBuffer, "%10s Cleared by Expose Hit (core=%d, type=%d, idx=%d, addr=%#x)\n", curTick(), c, type, i, printAddress(addr)); m_specBuf[c][i].address = 0; m_specBuf[c][i].data.clear(); } } } return; } else { DPRINTFR(MemSpecBuffer, "%10s Expose Miss (core=%d, type=%d, idx=%d, addr=%#x)\n", curTick(), coreId, type, sbeId, printAddress(addr)); ++m_expose_misses; for (int c = 0; c < 8; ++c) { for (int i = 0; i < 66; ++i) { if (m_specBuf[c][i].address == addr) { DPRINTFR(MemSpecBuffer, "%10s Cleared by Expose Miss (core=%d, type=%d, idx=%d, addr=%#x)\n", curTick(), c, type, i, printAddress(addr)); m_specBuf[c][i].address = 0; m_specBuf[c][i].data.clear(); } } } } } RequestPtr req = std::make_shared( addr, RubySystem::getBlockSizeBytes(), 0, m_masterId); PacketPtr pkt = Packet::createRead(req); uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; pkt->dataDynamic(newData); SenderState *s = new SenderState(id); s->type = type; s->coreId = coreId; s->sbeId = sbeId; pkt->pushSenderState(s); // Use functional rather than timing accesses during warmup if (RubySystem::getWarmupEnabled()) { memoryPort.sendFunctional(pkt); recvTimingResp(pkt); return; } memoryPort.schedTimingReq(pkt, clockEdge(latency)); } void AbstractController::queueMemoryWrite(const MachineID &id, Addr addr, Cycles latency, const DataBlock &block) { RequestPtr req = std::make_shared( addr, RubySystem::getBlockSizeBytes(), 0, m_masterId); PacketPtr pkt = Packet::createWrite(req); uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; pkt->dataDynamic(newData); memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()), RubySystem::getBlockSizeBytes()); SenderState *s = new SenderState(id); pkt->pushSenderState(s); // Use functional rather than timing accesses during warmup if (RubySystem::getWarmupEnabled()) { memoryPort.sendFunctional(pkt); recvTimingResp(pkt); return; } // Create a block and copy data from the block. memoryPort.schedTimingReq(pkt, clockEdge(latency)); } void AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr, Cycles latency, const DataBlock &block, int size) { RequestPtr req = std::make_shared(addr, size, 0, m_masterId); PacketPtr pkt = Packet::createWrite(req); uint8_t *newData = new uint8_t[size]; pkt->dataDynamic(newData); memcpy(newData, block.getData(getOffset(addr), size), size); SenderState *s = new SenderState(id); pkt->pushSenderState(s); // Create a block and copy data from the block. memoryPort.schedTimingReq(pkt, clockEdge(latency)); } void AbstractController::functionalMemoryRead(PacketPtr pkt) { memoryPort.sendFunctional(pkt); } int AbstractController::functionalMemoryWrite(PacketPtr pkt) { int num_functional_writes = 0; // Check the buffer from the controller to the memory. if (memoryPort.trySatisfyFunctional(pkt)) { num_functional_writes++; } // Update memory itself. memoryPort.sendFunctional(pkt); return num_functional_writes + 1; } void AbstractController::recvTimingResp(PacketPtr pkt) { assert(getMemoryQueue()); assert(pkt->isResponse()); std::shared_ptr msg = std::make_shared(clockEdge()); (*msg).m_addr = pkt->getAddr(); (*msg).m_Sender = m_machineID; SenderState *s = dynamic_cast(pkt->senderState); (*msg).m_OriginalRequestorMachId = s->id; int type = s->type; int coreId = s->coreId; int sbeId = s->sbeId; delete s; if (pkt->isRead()) { (*msg).m_Type = MemoryRequestType_MEMORY_READ; (*msg).m_MessageSize = MessageSizeType_Response_Data; // Copy data from the packet (*msg).m_DataBlk.setData(pkt->getPtr(), 0, RubySystem::getBlockSizeBytes()); if (type == 1) { DPRINTFR(MemSpecBuffer, "%10s Updated by ReadSpec (core=%d, type=%d, idx=%d, addr=%#x)\n", curTick(), coreId, type, sbeId, printAddress(pkt->getAddr())); m_specBuf[coreId][sbeId].address = pkt->getAddr(); m_specBuf[coreId][sbeId].data.setData(pkt->getPtr(), 0, RubySystem::getBlockSizeBytes()); } } else if (pkt->isWrite()) { (*msg).m_Type = MemoryRequestType_MEMORY_WB; (*msg).m_MessageSize = MessageSizeType_Writeback_Control; } else { panic("Incorrect packet type received from memory controller!"); } getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1))); delete pkt; } Tick AbstractController::recvAtomic(PacketPtr pkt) { return ticksToCycles(memoryPort.sendAtomic(pkt)); } MachineID AbstractController::mapAddressToMachine(Addr addr, MachineType mtype) const { NodeID node = m_net_ptr->addressToNodeID(addr, mtype); MachineID mach = {mtype, node}; return mach; } bool AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt) { controller->recvTimingResp(pkt); return true; } AbstractController::MemoryPort::MemoryPort(const std::string &_name, AbstractController *_controller, const std::string &_label) : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue), reqQueue(*_controller, *this, _label), snoopRespQueue(*_controller, *this, _label), controller(_controller) { }