/* * Copyright (c) 1999-2012 Mark D. Hill and David A. Wood * Copyright (c) 2013 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mem/ruby/structures/CacheMemory.hh" #include "base/intmath.hh" #include "debug/RubyCache.hh" #include "debug/RubyCacheTrace.hh" #include "debug/RubyResourceStalls.hh" #include "debug/RubyStats.hh" #include "mem/protocol/AccessPermission.hh" #include "mem/ruby/system/RubySystem.hh" #include "mem/ruby/system/WeightedLRUPolicy.hh" using namespace std; ostream& operator<<(ostream& out, const CacheMemory& obj) { obj.print(out); out << flush; return out; } CacheMemory * RubyCacheParams::create() { return new CacheMemory(this); } CacheMemory::CacheMemory(const Params *p) : SimObject(p), dataArray(p->dataArrayBanks, p->dataAccessLatency, p->start_index_bit, p->ruby_system), tagArray(p->tagArrayBanks, p->tagAccessLatency, p->start_index_bit, p->ruby_system) { m_cache_size = p->size; m_cache_assoc = p->assoc; m_replacementPolicy_ptr = p->replacement_policy; m_replacementPolicy_ptr->setCache(this); m_start_index_bit = p->start_index_bit; m_is_instruction_only_cache = p->is_icache; m_resource_stalls = p->resourceStalls; m_block_size = p->block_size; // may be 0 at this point. Updated in init() } void CacheMemory::init() { if (m_block_size == 0) { m_block_size = RubySystem::getBlockSizeBytes(); } m_cache_num_sets = (m_cache_size / m_cache_assoc) / m_block_size; assert(m_cache_num_sets > 1); m_cache_num_set_bits = floorLog2(m_cache_num_sets); assert(m_cache_num_set_bits > 0); m_cache.resize(m_cache_num_sets, std::vector(m_cache_assoc, nullptr)); } CacheMemory::~CacheMemory() { if (m_replacementPolicy_ptr) delete m_replacementPolicy_ptr; for (int i = 0; i < m_cache_num_sets; i++) { for (int j = 0; j < m_cache_assoc; j++) { delete m_cache[i][j]; } } } // convert a Address to its location in the cache int64_t CacheMemory::addressToCacheSet(Addr address) const { assert(address == makeLineAddress(address)); return bitSelect(address, m_start_index_bit, m_start_index_bit + m_cache_num_set_bits - 1); } // Given a cache index: returns the index of the tag in a set. // returns -1 if the tag is not found. int CacheMemory::findTagInSet(int64_t cacheSet, Addr tag) const { assert(tag == makeLineAddress(tag)); // search the set for the tags auto it = m_tag_index.find(tag); if (it != m_tag_index.end()) if (m_cache[cacheSet][it->second]->m_Permission != AccessPermission_NotPresent) return it->second; return -1; // Not found } // Given a cache index: returns the index of the tag in a set. // returns -1 if the tag is not found. int CacheMemory::findTagInSetIgnorePermissions(int64_t cacheSet, Addr tag) const { assert(tag == makeLineAddress(tag)); // search the set for the tags auto it = m_tag_index.find(tag); if (it != m_tag_index.end()) return it->second; return -1; // Not found } // Given an unique cache block identifier (idx): return the valid address // stored by the cache block. If the block is invalid/notpresent, the // function returns the 0 address Addr CacheMemory::getAddressAtIdx(int idx) const { Addr tmp(0); int set = idx / m_cache_assoc; assert(set < m_cache_num_sets); int way = idx - set * m_cache_assoc; assert (way < m_cache_assoc); AbstractCacheEntry* entry = m_cache[set][way]; if (entry == NULL || entry->m_Permission == AccessPermission_Invalid || entry->m_Permission == AccessPermission_NotPresent) { return tmp; } return entry->m_Address; } bool CacheMemory::tryCacheAccess(Addr address, RubyRequestType type, DataBlock*& data_ptr) { assert(address == makeLineAddress(address)); DPRINTF(RubyCache, "address: %#x\n", address); int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc != -1) { // Do we even have a tag match? AbstractCacheEntry* entry = m_cache[cacheSet][loc]; m_replacementPolicy_ptr->touch(cacheSet, loc, curTick()); data_ptr = &(entry->getDataBlk()); if (entry->m_Permission == AccessPermission_Read_Write) { return true; } if ((entry->m_Permission == AccessPermission_Read_Only) && (type == RubyRequestType_LD || type == RubyRequestType_IFETCH || type == RubyRequestType_SPEC_LD)) { return true; } // The line must not be accessible } data_ptr = NULL; return false; } bool CacheMemory::testCacheAccess(Addr address, RubyRequestType type, DataBlock*& data_ptr) { assert(address == makeLineAddress(address)); DPRINTF(RubyCache, "address: %#x\n", address); int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc != -1) { // Do we even have a tag match? AbstractCacheEntry* entry = m_cache[cacheSet][loc]; m_replacementPolicy_ptr->touch(cacheSet, loc, curTick()); data_ptr = &(entry->getDataBlk()); return m_cache[cacheSet][loc]->m_Permission != AccessPermission_NotPresent; } data_ptr = NULL; return false; } // tests to see if an address is present in the cache bool CacheMemory::isTagPresent(Addr address) const { assert(address == makeLineAddress(address)); int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc == -1) { // We didn't find the tag DPRINTF(RubyCache, "No tag match for address: %#x\n", address); return false; } DPRINTF(RubyCache, "address: %#x found\n", address); return true; } // Returns true if there is: // a) a tag match on this address or there is // b) an unused line in the same cache "way" bool CacheMemory::cacheAvail(Addr address) const { assert(address == makeLineAddress(address)); int64_t cacheSet = addressToCacheSet(address); for (int i = 0; i < m_cache_assoc; i++) { AbstractCacheEntry* entry = m_cache[cacheSet][i]; if (entry != NULL) { if (entry->m_Address == address || entry->m_Permission == AccessPermission_NotPresent) { // Already in the cache or we found an empty entry return true; } } else { return true; } } return false; } AbstractCacheEntry* CacheMemory::allocate(Addr address, AbstractCacheEntry *entry, bool touch) { assert(address == makeLineAddress(address)); assert(!isTagPresent(address)); assert(cacheAvail(address)); DPRINTF(RubyCache, "address: %#x\n", address); // Find the first open slot int64_t cacheSet = addressToCacheSet(address); std::vector &set = m_cache[cacheSet]; for (int i = 0; i < m_cache_assoc; i++) { if (!set[i] || set[i]->m_Permission == AccessPermission_NotPresent) { if (set[i] && (set[i] != entry)) { warn_once("This protocol contains a cache entry handling bug: " "Entries in the cache should never be NotPresent! If\n" "this entry (%#x) is not tracked elsewhere, it will memory " "leak here. Fix your protocol to eliminate these!", address); } set[i] = entry; // Init entry set[i]->m_Address = address; set[i]->m_Permission = AccessPermission_Invalid; DPRINTF(RubyCache, "Allocate clearing lock for addr: %x\n", address); set[i]->m_locked = -1; m_tag_index[address] = i; entry->setSetIndex(cacheSet); entry->setWayIndex(i); if (touch) { m_replacementPolicy_ptr->touch(cacheSet, i, curTick()); } return entry; } } panic("Allocate didn't find an available entry"); } void CacheMemory::deallocate(Addr address) { assert(address == makeLineAddress(address)); assert(isTagPresent(address)); DPRINTF(RubyCache, "address: %#x\n", address); int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc != -1) { delete m_cache[cacheSet][loc]; m_cache[cacheSet][loc] = NULL; m_tag_index.erase(address); } } // Returns with the physical address of the conflicting cache line Addr CacheMemory::cacheProbe(Addr address) const { assert(address == makeLineAddress(address)); assert(!cacheAvail(address)); int64_t cacheSet = addressToCacheSet(address); return m_cache[cacheSet][m_replacementPolicy_ptr->getVictim(cacheSet)]-> m_Address; } // looks an address up in the cache AbstractCacheEntry* CacheMemory::lookup(Addr address) { assert(address == makeLineAddress(address)); int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc == -1) return NULL; return m_cache[cacheSet][loc]; } // looks an address up in the cache const AbstractCacheEntry* CacheMemory::lookup(Addr address) const { assert(address == makeLineAddress(address)); int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc == -1) return NULL; return m_cache[cacheSet][loc]; } // Sets the most recently used bit for a cache block void CacheMemory::setMRU(Addr address) { int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc != -1) m_replacementPolicy_ptr->touch(cacheSet, loc, curTick()); } void CacheMemory::setMRU(const AbstractCacheEntry *e) { uint32_t cacheSet = e->getSetIndex(); uint32_t loc = e->getWayIndex(); m_replacementPolicy_ptr->touch(cacheSet, loc, curTick()); } void CacheMemory::setMRU(Addr address, int occupancy) { int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc != -1) { if (m_replacementPolicy_ptr->useOccupancy()) { (static_cast(m_replacementPolicy_ptr))-> touch(cacheSet, loc, curTick(), occupancy); } else { m_replacementPolicy_ptr-> touch(cacheSet, loc, curTick()); } } } int CacheMemory::getReplacementWeight(int64_t set, int64_t loc) { assert(set < m_cache_num_sets); assert(loc < m_cache_assoc); int ret = 0; if (m_cache[set][loc] != NULL) { ret = m_cache[set][loc]->getNumValidBlocks(); assert(ret >= 0); } return ret; } void CacheMemory::recordCacheContents(int cntrl, CacheRecorder* tr) const { uint64_t warmedUpBlocks = 0; uint64_t totalBlocks M5_VAR_USED = (uint64_t)m_cache_num_sets * (uint64_t)m_cache_assoc; for (int i = 0; i < m_cache_num_sets; i++) { for (int j = 0; j < m_cache_assoc; j++) { if (m_cache[i][j] != NULL) { AccessPermission perm = m_cache[i][j]->m_Permission; RubyRequestType request_type = RubyRequestType_NULL; if (perm == AccessPermission_Read_Only) { if (m_is_instruction_only_cache) { request_type = RubyRequestType_IFETCH; } else { request_type = RubyRequestType_LD; } } else if (perm == AccessPermission_Read_Write) { request_type = RubyRequestType_ST; } if (request_type != RubyRequestType_NULL) { tr->addRecord(cntrl, m_cache[i][j]->m_Address, 0, request_type, m_replacementPolicy_ptr->getLastAccess(i, j), m_cache[i][j]->getDataBlk()); warmedUpBlocks++; } } } } DPRINTF(RubyCacheTrace, "%s: %lli blocks of %lli total blocks" "recorded %.2f%% \n", name().c_str(), warmedUpBlocks, totalBlocks, (float(warmedUpBlocks) / float(totalBlocks)) * 100.0); } void CacheMemory::print(ostream& out) const { out << "Cache dump: " << name() << endl; for (int i = 0; i < m_cache_num_sets; i++) { for (int j = 0; j < m_cache_assoc; j++) { if (m_cache[i][j] != NULL) { out << " Index: " << i << " way: " << j << " entry: " << *m_cache[i][j] << endl; } else { out << " Index: " << i << " way: " << j << " entry: NULL" << endl; } } } } void CacheMemory::printData(ostream& out) const { out << "printData() not supported" << endl; } void CacheMemory::setLocked(Addr address, int context) { DPRINTF(RubyCache, "Setting Lock for addr: %#x to %d\n", address, context); assert(address == makeLineAddress(address)); int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); assert(loc != -1); m_cache[cacheSet][loc]->setLocked(context); } void CacheMemory::clearLocked(Addr address) { DPRINTF(RubyCache, "Clear Lock for addr: %#x\n", address); assert(address == makeLineAddress(address)); int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); assert(loc != -1); m_cache[cacheSet][loc]->clearLocked(); } bool CacheMemory::isLocked(Addr address, int context) { assert(address == makeLineAddress(address)); int64_t cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); assert(loc != -1); DPRINTF(RubyCache, "Testing Lock for addr: %#llx cur %d con %d\n", address, m_cache[cacheSet][loc]->m_locked, context); return m_cache[cacheSet][loc]->isLocked(context); } void CacheMemory::regStats() { SimObject::regStats(); m_demand_hits .name(name() + ".demand_hits") .desc("Number of cache demand hits") ; m_demand_misses .name(name() + ".demand_misses") .desc("Number of cache demand misses") ; m_demand_accesses .name(name() + ".demand_accesses") .desc("Number of cache demand accesses") ; m_demand_accesses = m_demand_hits + m_demand_misses; m_sw_prefetches .name(name() + ".total_sw_prefetches") .desc("Number of software prefetches") .flags(Stats::nozero) ; m_hw_prefetches .name(name() + ".total_hw_prefetches") .desc("Number of hardware prefetches") .flags(Stats::nozero) ; m_prefetches .name(name() + ".total_prefetches") .desc("Number of prefetches") .flags(Stats::nozero) ; m_prefetches = m_sw_prefetches + m_hw_prefetches; m_accessModeType .init(RubyRequestType_NUM) .name(name() + ".access_mode") .flags(Stats::pdf | Stats::total) ; for (int i = 0; i < RubyAccessMode_NUM; i++) { m_accessModeType .subname(i, RubyAccessMode_to_string(RubyAccessMode(i))) .flags(Stats::nozero) ; } numDataArrayReads .name(name() + ".num_data_array_reads") .desc("number of data array reads") .flags(Stats::nozero) ; numDataArrayWrites .name(name() + ".num_data_array_writes") .desc("number of data array writes") .flags(Stats::nozero) ; numTagArrayReads .name(name() + ".num_tag_array_reads") .desc("number of tag array reads") .flags(Stats::nozero) ; numTagArrayWrites .name(name() + ".num_tag_array_writes") .desc("number of tag array writes") .flags(Stats::nozero) ; numTagArrayStalls .name(name() + ".num_tag_array_stalls") .desc("number of stalls caused by tag array") .flags(Stats::nozero) ; numDataArrayStalls .name(name() + ".num_data_array_stalls") .desc("number of stalls caused by data array") .flags(Stats::nozero) ; } // assumption: SLICC generated files will only call this function // once **all** resources are granted void CacheMemory::recordRequestType(CacheRequestType requestType, Addr addr) { DPRINTF(RubyStats, "Recorded statistic: %s\n", CacheRequestType_to_string(requestType)); switch(requestType) { case CacheRequestType_DataArrayRead: if (m_resource_stalls) dataArray.reserve(addressToCacheSet(addr)); numDataArrayReads++; return; case CacheRequestType_DataArrayWrite: if (m_resource_stalls) dataArray.reserve(addressToCacheSet(addr)); numDataArrayWrites++; return; case CacheRequestType_TagArrayRead: if (m_resource_stalls) tagArray.reserve(addressToCacheSet(addr)); numTagArrayReads++; return; case CacheRequestType_TagArrayWrite: if (m_resource_stalls) tagArray.reserve(addressToCacheSet(addr)); numTagArrayWrites++; return; default: warn("CacheMemory access_type not found: %s", CacheRequestType_to_string(requestType)); } } bool CacheMemory::checkResourceAvailable(CacheResourceType res, Addr addr) { if (!m_resource_stalls) { return true; } if (res == CacheResourceType_TagArray) { if (tagArray.tryAccess(addressToCacheSet(addr))) return true; else { DPRINTF(RubyResourceStalls, "Tag array stall on addr %#x in set %d\n", addr, addressToCacheSet(addr)); numTagArrayStalls++; return false; } } else if (res == CacheResourceType_DataArray) { if (dataArray.tryAccess(addressToCacheSet(addr))) return true; else { DPRINTF(RubyResourceStalls, "Data array stall on addr %#x in set %d\n", addr, addressToCacheSet(addr)); numDataArrayStalls++; return false; } } else { assert(false); return true; } } bool CacheMemory::isBlockInvalid(int64_t cache_set, int64_t loc) { return (m_cache[cache_set][loc]->m_Permission == AccessPermission_Invalid); } bool CacheMemory::isBlockNotBusy(int64_t cache_set, int64_t loc) { return (m_cache[cache_set][loc]->m_Permission != AccessPermission_Busy); }