/* * Copyright (c) 1999-2012 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "base/intmath.hh" #include "debug/RubyCache.hh" #include "debug/RubyCacheTrace.hh" #include "debug/RubyResourceStalls.hh" #include "debug/RubyStats.hh" #include "mem/protocol/AccessPermission.hh" #include "mem/ruby/system/CacheMemory.hh" #include "mem/ruby/system/System.hh" using namespace std; ostream& operator<<(ostream& out, const CacheMemory& obj) { obj.print(out); out << flush; return out; } CacheMemory * RubyCacheParams::create() { return new CacheMemory(this); } CacheMemory::CacheMemory(const Params *p) : SimObject(p), dataArray(p->dataArrayBanks, p->dataAccessLatency, p->start_index_bit), tagArray(p->tagArrayBanks, p->tagAccessLatency, p->start_index_bit) { m_cache_size = p->size; m_latency = p->latency; m_cache_assoc = p->assoc; m_policy = p->replacement_policy; m_profiler_ptr = new CacheProfiler(name()); m_start_index_bit = p->start_index_bit; m_is_instruction_only_cache = p->is_icache; m_resource_stalls = p->resourceStalls; } void CacheMemory::init() { m_cache_num_sets = (m_cache_size / m_cache_assoc) / RubySystem::getBlockSizeBytes(); assert(m_cache_num_sets > 1); m_cache_num_set_bits = floorLog2(m_cache_num_sets); assert(m_cache_num_set_bits > 0); if (m_policy == "PSEUDO_LRU") m_replacementPolicy_ptr = new PseudoLRUPolicy(m_cache_num_sets, m_cache_assoc); else if (m_policy == "LRU") m_replacementPolicy_ptr = new LRUPolicy(m_cache_num_sets, m_cache_assoc); else assert(false); m_cache.resize(m_cache_num_sets); for (int i = 0; i < m_cache_num_sets; i++) { m_cache[i].resize(m_cache_assoc); for (int j = 0; j < m_cache_assoc; j++) { m_cache[i][j] = NULL; } } } CacheMemory::~CacheMemory() { if (m_replacementPolicy_ptr != NULL) delete m_replacementPolicy_ptr; delete m_profiler_ptr; for (int i = 0; i < m_cache_num_sets; i++) { for (int j = 0; j < m_cache_assoc; j++) { delete m_cache[i][j]; } } } // convert a Address to its location in the cache Index CacheMemory::addressToCacheSet(const Address& address) const { assert(address == line_address(address)); return address.bitSelect(m_start_index_bit, m_start_index_bit + m_cache_num_set_bits - 1); } // Given a cache index: returns the index of the tag in a set. // returns -1 if the tag is not found. int CacheMemory::findTagInSet(Index cacheSet, const Address& tag) const { assert(tag == line_address(tag)); // search the set for the tags m5::hash_map::const_iterator it = m_tag_index.find(tag); if (it != m_tag_index.end()) if (m_cache[cacheSet][it->second]->m_Permission != AccessPermission_NotPresent) return it->second; return -1; // Not found } // Given a cache index: returns the index of the tag in a set. // returns -1 if the tag is not found. int CacheMemory::findTagInSetIgnorePermissions(Index cacheSet, const Address& tag) const { assert(tag == line_address(tag)); // search the set for the tags m5::hash_map::const_iterator it = m_tag_index.find(tag); if (it != m_tag_index.end()) return it->second; return -1; // Not found } bool CacheMemory::tryCacheAccess(const Address& address, RubyRequestType type, DataBlock*& data_ptr) { assert(address == line_address(address)); DPRINTF(RubyCache, "address: %s\n", address); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc != -1) { // Do we even have a tag match? AbstractCacheEntry* entry = m_cache[cacheSet][loc]; m_replacementPolicy_ptr->touch(cacheSet, loc, curTick()); data_ptr = &(entry->getDataBlk()); if (entry->m_Permission == AccessPermission_Read_Write) { return true; } if ((entry->m_Permission == AccessPermission_Read_Only) && (type == RubyRequestType_LD || type == RubyRequestType_IFETCH)) { return true; } // The line must not be accessible } data_ptr = NULL; return false; } bool CacheMemory::testCacheAccess(const Address& address, RubyRequestType type, DataBlock*& data_ptr) { assert(address == line_address(address)); DPRINTF(RubyCache, "address: %s\n", address); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc != -1) { // Do we even have a tag match? AbstractCacheEntry* entry = m_cache[cacheSet][loc]; m_replacementPolicy_ptr->touch(cacheSet, loc, curTick()); data_ptr = &(entry->getDataBlk()); return m_cache[cacheSet][loc]->m_Permission != AccessPermission_NotPresent; } data_ptr = NULL; return false; } // tests to see if an address is present in the cache bool CacheMemory::isTagPresent(const Address& address) const { assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc == -1) { // We didn't find the tag DPRINTF(RubyCache, "No tag match for address: %s\n", address); return false; } DPRINTF(RubyCache, "address: %s found\n", address); return true; } // Returns true if there is: // a) a tag match on this address or there is // b) an unused line in the same cache "way" bool CacheMemory::cacheAvail(const Address& address) const { assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); for (int i = 0; i < m_cache_assoc; i++) { AbstractCacheEntry* entry = m_cache[cacheSet][i]; if (entry != NULL) { if (entry->m_Address == address || entry->m_Permission == AccessPermission_NotPresent) { // Already in the cache or we found an empty entry return true; } } else { return true; } } return false; } AbstractCacheEntry* CacheMemory::allocate(const Address& address, AbstractCacheEntry* entry) { assert(address == line_address(address)); assert(!isTagPresent(address)); assert(cacheAvail(address)); DPRINTF(RubyCache, "address: %s\n", address); // Find the first open slot Index cacheSet = addressToCacheSet(address); std::vector &set = m_cache[cacheSet]; for (int i = 0; i < m_cache_assoc; i++) { if (!set[i] || set[i]->m_Permission == AccessPermission_NotPresent) { set[i] = entry; // Init entry set[i]->m_Address = address; set[i]->m_Permission = AccessPermission_Invalid; DPRINTF(RubyCache, "Allocate clearing lock for addr: %x\n", address); set[i]->m_locked = -1; m_tag_index[address] = i; m_replacementPolicy_ptr->touch(cacheSet, i, curTick()); return entry; } } panic("Allocate didn't find an available entry"); } void CacheMemory::deallocate(const Address& address) { assert(address == line_address(address)); assert(isTagPresent(address)); DPRINTF(RubyCache, "address: %s\n", address); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (loc != -1) { delete m_cache[cacheSet][loc]; m_cache[cacheSet][loc] = NULL; m_tag_index.erase(address); } } // Returns with the physical address of the conflicting cache line Address CacheMemory::cacheProbe(const Address& address) const { assert(address == line_address(address)); assert(!cacheAvail(address)); Index cacheSet = addressToCacheSet(address); return m_cache[cacheSet][m_replacementPolicy_ptr->getVictim(cacheSet)]-> m_Address; } // looks an address up in the cache AbstractCacheEntry* CacheMemory::lookup(const Address& address) { assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if(loc == -1) return NULL; return m_cache[cacheSet][loc]; } // looks an address up in the cache const AbstractCacheEntry* CacheMemory::lookup(const Address& address) const { assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if(loc == -1) return NULL; return m_cache[cacheSet][loc]; } // Sets the most recently used bit for a cache block void CacheMemory::setMRU(const Address& address) { Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if(loc != -1) m_replacementPolicy_ptr->touch(cacheSet, loc, curTick()); } void CacheMemory::profileMiss(const RubyRequest& msg) { m_profiler_ptr->addCacheStatSample(msg.getType(), msg.getAccessMode(), msg.getPrefetch()); } void CacheMemory::profileGenericRequest(GenericRequestType requestType, RubyAccessMode accessType, PrefetchBit pfBit) { m_profiler_ptr->addGenericStatSample(requestType, accessType, pfBit); } void CacheMemory::recordCacheContents(int cntrl, CacheRecorder* tr) const { uint64 warmedUpBlocks = 0; uint64 totalBlocks M5_VAR_USED = (uint64)m_cache_num_sets * (uint64)m_cache_assoc; for (int i = 0; i < m_cache_num_sets; i++) { for (int j = 0; j < m_cache_assoc; j++) { if (m_cache[i][j] != NULL) { AccessPermission perm = m_cache[i][j]->m_Permission; RubyRequestType request_type = RubyRequestType_NULL; if (perm == AccessPermission_Read_Only) { if (m_is_instruction_only_cache) { request_type = RubyRequestType_IFETCH; } else { request_type = RubyRequestType_LD; } } else if (perm == AccessPermission_Read_Write) { request_type = RubyRequestType_ST; } if (request_type != RubyRequestType_NULL) { tr->addRecord(cntrl, m_cache[i][j]->m_Address.getAddress(), 0, request_type, m_replacementPolicy_ptr->getLastAccess(i, j), m_cache[i][j]->getDataBlk()); warmedUpBlocks++; } } } } DPRINTF(RubyCacheTrace, "%s: %lli blocks of %lli total blocks" "recorded %.2f%% \n", name().c_str(), warmedUpBlocks, (uint64)m_cache_num_sets * (uint64)m_cache_assoc, (float(warmedUpBlocks)/float(totalBlocks))*100.0); } void CacheMemory::print(ostream& out) const { out << "Cache dump: " << m_cache_name << endl; for (int i = 0; i < m_cache_num_sets; i++) { for (int j = 0; j < m_cache_assoc; j++) { if (m_cache[i][j] != NULL) { out << " Index: " << i << " way: " << j << " entry: " << *m_cache[i][j] << endl; } else { out << " Index: " << i << " way: " << j << " entry: NULL" << endl; } } } } void CacheMemory::printData(ostream& out) const { out << "printData() not supported" << endl; } void CacheMemory::clearStats() const { m_profiler_ptr->clearStats(); } void CacheMemory::printStats(ostream& out) const { m_profiler_ptr->printStats(out); } void CacheMemory::setLocked(const Address& address, int context) { DPRINTF(RubyCache, "Setting Lock for addr: %x to %d\n", address, context); assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); assert(loc != -1); m_cache[cacheSet][loc]->m_locked = context; } void CacheMemory::clearLocked(const Address& address) { DPRINTF(RubyCache, "Clear Lock for addr: %x\n", address); assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); assert(loc != -1); m_cache[cacheSet][loc]->m_locked = -1; } bool CacheMemory::isLocked(const Address& address, int context) { assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); assert(loc != -1); DPRINTF(RubyCache, "Testing Lock for addr: %llx cur %d con %d\n", address, m_cache[cacheSet][loc]->m_locked, context); return m_cache[cacheSet][loc]->m_locked == context; } void CacheMemory::recordRequestType(CacheRequestType requestType) { DPRINTF(RubyStats, "Recorded statistic: %s\n", CacheRequestType_to_string(requestType)); switch(requestType) { case CacheRequestType_DataArrayRead: numDataArrayReads++; return; case CacheRequestType_DataArrayWrite: numDataArrayWrites++; return; case CacheRequestType_TagArrayRead: numTagArrayReads++; return; case CacheRequestType_TagArrayWrite: numTagArrayWrites++; return; default: warn("CacheMemory access_type not found: %s", CacheRequestType_to_string(requestType)); } } void CacheMemory::regStats() { using namespace Stats; numDataArrayReads .name(name() + ".num_data_array_reads") .desc("number of data array reads") ; numDataArrayWrites .name(name() + ".num_data_array_writes") .desc("number of data array writes") ; numTagArrayReads .name(name() + ".num_tag_array_reads") .desc("number of tag array reads") ; numTagArrayWrites .name(name() + ".num_tag_array_writes") .desc("number of tag array writes") ; numTagArrayStalls .name(name() + ".num_tag_array_stalls") .desc("number of stalls caused by tag array") ; numDataArrayStalls .name(name() + ".num_data_array_stalls") .desc("number of stalls caused by data array") ; } bool CacheMemory::checkResourceAvailable(CacheResourceType res, Address addr) { if (!m_resource_stalls) { return true; } if (res == CacheResourceType_TagArray) { if (tagArray.tryAccess(addressToCacheSet(addr))) return true; else { DPRINTF(RubyResourceStalls, "Tag array stall on addr %s in set %d\n", addr, addressToCacheSet(addr)); numTagArrayStalls++; return false; } } else if (res == CacheResourceType_DataArray) { if (dataArray.tryAccess(addressToCacheSet(addr))) return true; else { DPRINTF(RubyResourceStalls, "Data array stall on addr %s in set %d\n", addr, addressToCacheSet(addr)); numDataArrayStalls++; return false; } } else { assert(false); return true; } }