/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mem/ruby/system/CacheMemory.hh" // ******************* Definitions ******************* // Output operator definition ostream& operator<<(ostream& out, const CacheMemory& obj) { obj.print(out); out << flush; return out; } // **************************************************************** CacheMemory * RubyCacheParams::create() { return new CacheMemory(this); } CacheMemory::CacheMemory(const Params *p) : SimObject(p) { m_cache_size = p->size; m_latency = p->latency; m_cache_assoc = p->assoc; m_policy = p->replacement_policy; m_profiler_ptr = new CacheProfiler(name()); } void CacheMemory::init() { m_cache_num_sets = (m_cache_size / m_cache_assoc) / RubySystem::getBlockSizeBytes(); assert(m_cache_num_sets > 1); m_cache_num_set_bits = log_int(m_cache_num_sets); assert(m_cache_num_set_bits > 0); if(m_policy == "PSEUDO_LRU") m_replacementPolicy_ptr = new PseudoLRUPolicy(m_cache_num_sets, m_cache_assoc); else if (m_policy == "LRU") m_replacementPolicy_ptr = new LRUPolicy(m_cache_num_sets, m_cache_assoc); else assert(false); m_cache.setSize(m_cache_num_sets); m_locked.setSize(m_cache_num_sets); for (int i = 0; i < m_cache_num_sets; i++) { m_cache[i].setSize(m_cache_assoc); m_locked[i].setSize(m_cache_assoc); for (int j = 0; j < m_cache_assoc; j++) { m_cache[i][j] = NULL; m_locked[i][j] = -1; } } } CacheMemory::~CacheMemory() { if(m_replacementPolicy_ptr != NULL) delete m_replacementPolicy_ptr; delete m_profiler_ptr; for (int i = 0; i < m_cache_num_sets; i++) { for (int j = 0; j < m_cache_assoc; j++) { delete m_cache[i][j]; } } } void CacheMemory::printConfig(ostream& out) { out << "Cache config: " << m_cache_name << endl; out << " cache_associativity: " << m_cache_assoc << endl; out << " num_cache_sets_bits: " << m_cache_num_set_bits << endl; const int cache_num_sets = 1 << m_cache_num_set_bits; out << " num_cache_sets: " << cache_num_sets << endl; out << " cache_set_size_bytes: " << cache_num_sets * RubySystem::getBlockSizeBytes() << endl; out << " cache_set_size_Kbytes: " << double(cache_num_sets * RubySystem::getBlockSizeBytes()) / (1<<10) << endl; out << " cache_set_size_Mbytes: " << double(cache_num_sets * RubySystem::getBlockSizeBytes()) / (1<<20) << endl; out << " cache_size_bytes: " << cache_num_sets * RubySystem::getBlockSizeBytes() * m_cache_assoc << endl; out << " cache_size_Kbytes: " << double(cache_num_sets * RubySystem::getBlockSizeBytes() * m_cache_assoc) / (1<<10) << endl; out << " cache_size_Mbytes: " << double(cache_num_sets * RubySystem::getBlockSizeBytes() * m_cache_assoc) / (1<<20) << endl; } // PRIVATE METHODS // convert a Address to its location in the cache Index CacheMemory::addressToCacheSet(const Address& address) const { assert(address == line_address(address)); return address.bitSelect(RubySystem::getBlockSizeBits(), RubySystem::getBlockSizeBits() + m_cache_num_set_bits-1); } // Given a cache index: returns the index of the tag in a set. // returns -1 if the tag is not found. int CacheMemory::findTagInSet(Index cacheSet, const Address& tag) const { assert(tag == line_address(tag)); // search the set for the tags m5::hash_map
::const_iterator it = m_tag_index.find(tag); if (it != m_tag_index.end()) if (m_cache[cacheSet][it->second]->m_Permission != AccessPermission_NotPresent) return it->second; return -1; // Not found } // Given a cache index: returns the index of the tag in a set. // returns -1 if the tag is not found. int CacheMemory::findTagInSetIgnorePermissions(Index cacheSet, const Address& tag) const { assert(tag == line_address(tag)); // search the set for the tags m5::hash_map::const_iterator it = m_tag_index.find(tag); if (it != m_tag_index.end()) return it->second; return -1; // Not found } // PUBLIC METHODS bool CacheMemory::tryCacheAccess(const Address& address, CacheRequestType type, DataBlock*& data_ptr) { assert(address == line_address(address)); DEBUG_EXPR(CACHE_COMP, HighPrio, address); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if(loc != -1){ // Do we even have a tag match? AbstractCacheEntry* entry = m_cache[cacheSet][loc]; m_replacementPolicy_ptr->touch(cacheSet, loc, g_eventQueue_ptr->getTime()); data_ptr = &(entry->getDataBlk()); if(entry->m_Permission == AccessPermission_Read_Write) { return true; } if ((entry->m_Permission == AccessPermission_Read_Only) && (type == CacheRequestType_LD || type == CacheRequestType_IFETCH)) { return true; } // The line must not be accessible } data_ptr = NULL; return false; } bool CacheMemory::testCacheAccess(const Address& address, CacheRequestType type, DataBlock*& data_ptr) { assert(address == line_address(address)); DEBUG_EXPR(CACHE_COMP, HighPrio, address); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if(loc != -1){ // Do we even have a tag match? AbstractCacheEntry* entry = m_cache[cacheSet][loc]; m_replacementPolicy_ptr->touch(cacheSet, loc, g_eventQueue_ptr->getTime()); data_ptr = &(entry->getDataBlk()); return (m_cache[cacheSet][loc]->m_Permission != AccessPermission_NotPresent); } data_ptr = NULL; return false; } // tests to see if an address is present in the cache bool CacheMemory::isTagPresent(const Address& address) const { assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); int location = findTagInSet(cacheSet, address); if (location == -1) { // We didn't find the tag DEBUG_EXPR(CACHE_COMP, LowPrio, address); DEBUG_MSG(CACHE_COMP, LowPrio, "No tag match"); return false; } DEBUG_EXPR(CACHE_COMP, LowPrio, address); DEBUG_MSG(CACHE_COMP, LowPrio, "found"); return true; } // Returns true if there is: // a) a tag match on this address or there is // b) an unused line in the same cache "way" bool CacheMemory::cacheAvail(const Address& address) const { assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); for (int i=0; i < m_cache_assoc; i++) { AbstractCacheEntry* entry = m_cache[cacheSet][i]; if (entry != NULL) { if (entry->m_Address == address || // Already in the cache entry->m_Permission == AccessPermission_NotPresent) { // We found an empty entry return true; } } else { return true; } } return false; } void CacheMemory::allocate(const Address& address, AbstractCacheEntry* entry) { assert(address == line_address(address)); assert(!isTagPresent(address)); assert(cacheAvail(address)); DEBUG_EXPR(CACHE_COMP, HighPrio, address); // Find the first open slot Index cacheSet = addressToCacheSet(address); for (int i=0; i < m_cache_assoc; i++) { if (m_cache[cacheSet][i] == NULL || m_cache[cacheSet][i]->m_Permission == AccessPermission_NotPresent) { m_cache[cacheSet][i] = entry; // Init entry m_cache[cacheSet][i]->m_Address = address; m_cache[cacheSet][i]->m_Permission = AccessPermission_Invalid; DPRINTF(RubyCache, "Allocate clearing lock for addr: %llx\n", address); m_locked[cacheSet][i] = -1; m_tag_index[address] = i; m_replacementPolicy_ptr->touch(cacheSet, i, g_eventQueue_ptr->getTime()); return; } } ERROR_MSG("Allocate didn't find an available entry"); } void CacheMemory::deallocate(const Address& address) { assert(address == line_address(address)); assert(isTagPresent(address)); DEBUG_EXPR(CACHE_COMP, HighPrio, address); Index cacheSet = addressToCacheSet(address); int location = findTagInSet(cacheSet, address); if (location != -1){ delete m_cache[cacheSet][location]; m_cache[cacheSet][location] = NULL; DPRINTF(RubyCache, "Deallocate clearing lock for addr: %llx\n", address); m_locked[cacheSet][location] = -1; m_tag_index.erase(address); } } // Returns with the physical address of the conflicting cache line Address CacheMemory::cacheProbe(const Address& address) const { assert(address == line_address(address)); assert(!cacheAvail(address)); Index cacheSet = addressToCacheSet(address); return m_cache[cacheSet][m_replacementPolicy_ptr->getVictim(cacheSet)]->m_Address; } // looks an address up in the cache AbstractCacheEntry& CacheMemory::lookup(const Address& address) { assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); assert(loc != -1); return *m_cache[cacheSet][loc]; } // looks an address up in the cache const AbstractCacheEntry& CacheMemory::lookup(const Address& address) const { assert(address == line_address(address)); Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); assert(loc != -1); return *m_cache[cacheSet][loc]; } AccessPermission CacheMemory::getPermission(const Address& address) const { assert(address == line_address(address)); return lookup(address).m_Permission; } void CacheMemory::changePermission(const Address& address, AccessPermission new_perm) { assert(address == line_address(address)); lookup(address).m_Permission = new_perm; Index cacheSet = addressToCacheSet(address); int loc = findTagInSet(cacheSet, address); if (new_perm != AccessPermission_Read_Write) { DPRINTF(RubyCache, "Permission clearing lock for addr: %llx\n", address); m_locked[cacheSet][loc] = -1; } assert(getPermission(address) == new_perm); } // Sets the most recently used bit for a cache block void CacheMemory::setMRU(const Address& address) { Index cacheSet; cacheSet = addressToCacheSet(address); m_replacementPolicy_ptr->touch(cacheSet, findTagInSet(cacheSet, address), g_eventQueue_ptr->getTime()); } void CacheMemory::profileMiss(const CacheMsg & msg) { m_profiler_ptr->addStatSample(msg.getType(), msg.getAccessMode(), msg.getSize(), msg.getPrefetch()); } void CacheMemory::recordCacheContents(CacheRecorder& tr) const { for (int i = 0; i < m_cache_num_sets; i++) { for (int j = 0; j < m_cache_assoc; j++) { AccessPermission perm = m_cache[i][j]->m_Permission; CacheRequestType request_type = CacheRequestType_NULL; if (perm == AccessPermission_Read_Only) { if (m_is_instruction_only_cache) { request_type = CacheRequestType_IFETCH; } else { request_type = CacheRequestType_LD; } } else if (perm == AccessPermission_Read_Write) { request_type = CacheRequestType_ST; } if (request_type != CacheRequestType_NULL) { // tr.addRecord(m_chip_ptr->getID(), m_cache[i][j].m_Address, // Address(0), request_type, m_replacementPolicy_ptr->getLastAccess(i, j)); } } } } void CacheMemory::print(ostream& out) const { out << "Cache dump: " << m_cache_name << endl; for (int i = 0; i < m_cache_num_sets; i++) { for (int j = 0; j < m_cache_assoc; j++) { if (m_cache[i][j] != NULL) { out << " Index: " << i << " way: " << j << " entry: " << *m_cache[i][j] << endl; } else { out << " Index: " << i << " way: " << j << " entry: NULL" << endl; } } } } void CacheMemory::printData(ostream& out) const { out << "printData() not supported" << endl; } void CacheMemory::clearStats() const { m_profiler_ptr->clearStats(); } void CacheMemory::printStats(ostream& out) const { m_profiler_ptr->printStats(out); } void CacheMemory::getMemoryValue(const Address& addr, char* value, unsigned int size_in_bytes ){ AbstractCacheEntry& entry = lookup(line_address(addr)); unsigned int startByte = addr.getAddress() - line_address(addr).getAddress(); for(unsigned int i=0; i