/* * Copyright (c) 2009 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef __MEM_RUBY_SYSTEM_MEMORYVECTOR_HH__ #define __MEM_RUBY_SYSTEM_MEMORYVECTOR_HH__ #include "base/trace.hh" #include "debug/RubyCacheTrace.hh" #include "mem/ruby/common/Address.hh" class DirectoryMemory; /** * MemoryVector holds memory data (DRAM only) */ class MemoryVector { public: MemoryVector(); MemoryVector(uint64 size); ~MemoryVector(); friend class DirectoryMemory; void resize(uint64 size); // destructive void write(const Address & paddr, uint8_t *data, int len); uint8_t *read(const Address & paddr, uint8_t *data, int len); uint32_t collatePages(uint8_t *&raw_data); void populatePages(uint8_t *raw_data); private: uint8_t *getBlockPtr(const PhysAddress & addr); uint64 m_size; uint8_t **m_pages; uint32_t m_num_pages; const uint32_t m_page_offset_mask; static const uint32_t PAGE_SIZE = 4096; }; inline MemoryVector::MemoryVector() : m_page_offset_mask(4095) { m_size = 0; m_num_pages = 0; m_pages = NULL; } inline MemoryVector::MemoryVector(uint64 size) : m_page_offset_mask(4095) { resize(size); } inline MemoryVector::~MemoryVector() { for (int i = 0; i < m_num_pages; i++) { if (m_pages[i] != 0) { delete [] m_pages[i]; } } delete [] m_pages; } inline void MemoryVector::resize(uint64 size) { if (m_pages != NULL){ for (int i = 0; i < m_num_pages; i++) { if (m_pages[i] != 0) { delete [] m_pages[i]; } } delete [] m_pages; } m_size = size; assert(size%PAGE_SIZE == 0); m_num_pages = size >> 12; m_pages = new uint8_t*[m_num_pages]; memset(m_pages, 0, m_num_pages * sizeof(uint8_t*)); } inline void MemoryVector::write(const Address & paddr, uint8_t *data, int len) { assert(paddr.getAddress() + len <= m_size); uint32_t page_num = paddr.getAddress() >> 12; if (m_pages[page_num] == 0) { bool all_zeros = true; for (int i = 0; i < len;i++) { if (data[i] != 0) { all_zeros = false; break; } } if (all_zeros) return; m_pages[page_num] = new uint8_t[PAGE_SIZE]; memset(m_pages[page_num], 0, PAGE_SIZE); uint32_t offset = paddr.getAddress() & m_page_offset_mask; memcpy(&m_pages[page_num][offset], data, len); } else { memcpy(&m_pages[page_num][paddr.getAddress()&m_page_offset_mask], data, len); } } inline uint8_t* MemoryVector::read(const Address & paddr, uint8_t *data, int len) { assert(paddr.getAddress() + len <= m_size); uint32_t page_num = paddr.getAddress() >> 12; if (m_pages[page_num] == 0) { memset(data, 0, len); } else { memcpy(data, &m_pages[page_num][paddr.getAddress()&m_page_offset_mask], len); } return data; } inline uint8_t* MemoryVector::getBlockPtr(const PhysAddress & paddr) { uint32_t page_num = paddr.getAddress() >> 12; if (m_pages[page_num] == 0) { m_pages[page_num] = new uint8_t[PAGE_SIZE]; memset(m_pages[page_num], 0, PAGE_SIZE); } return &m_pages[page_num][paddr.getAddress()&m_page_offset_mask]; } /*! * Function for collating all the pages of the physical memory together. * In case a pointer for a page is NULL, this page needs only a single byte * to represent that the pointer is NULL. Otherwise, it needs 1 + PAGE_SIZE * bytes. The first represents that the page pointer is not NULL, and rest of * the bytes represent the data on the page. */ inline uint32_t MemoryVector::collatePages(uint8_t *&raw_data) { uint32_t num_zero_pages = 0; uint32_t data_size = 0; for (uint32_t i = 0;i < m_num_pages; ++i) { if (m_pages[i] == 0) num_zero_pages++; } raw_data = new uint8_t[sizeof(uint32_t) /* number of pages*/ + m_num_pages /* whether the page is all zeros */ + PAGE_SIZE * (m_num_pages - num_zero_pages)]; /* Write the number of pages to be stored. */ memcpy(raw_data, &m_num_pages, sizeof(uint32_t)); data_size = sizeof(uint32_t); DPRINTF(RubyCacheTrace, "collating %d pages\n", m_num_pages); for (uint32_t i = 0;i < m_num_pages; ++i) { if (m_pages[i] == 0) { raw_data[data_size] = 0; } else { raw_data[data_size] = 1; memcpy(raw_data + data_size + 1, m_pages[i], PAGE_SIZE); data_size += PAGE_SIZE; } data_size += 1; } return data_size; } /*! * Function for populating the pages of the memory using the available raw * data. Each page has a byte associate with it, which represents whether the * page was NULL or not, when all the pages were collated. The function assumes * that the number of pages in the memory are same as those that were recorded * in the checkpoint. */ inline void MemoryVector::populatePages(uint8_t *raw_data) { uint32_t data_size = 0; uint32_t num_pages = 0; /* Read the number of pages that were stored. */ memcpy(&num_pages, raw_data, sizeof(uint32_t)); data_size = sizeof(uint32_t); assert(num_pages == m_num_pages); DPRINTF(RubyCacheTrace, "Populating %d pages\n", num_pages); for (uint32_t i = 0;i < m_num_pages; ++i) { assert(m_pages[i] == 0); if (raw_data[data_size] != 0) { m_pages[i] = new uint8_t[PAGE_SIZE]; memcpy(m_pages[i], raw_data + data_size + 1, PAGE_SIZE); data_size += PAGE_SIZE; } data_size += 1; } } #endif // __MEM_RUBY_SYSTEM_MEMORYVECTOR_HH__