/* * Copyright (c) 2012 ARM Limited * All rights reserved. * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2009 Advanced Micro Devices, Inc. * Copyright (c) 2011 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "cpu/testers/rubytest/RubyTester.hh" #include "debug/Config.hh" #include "debug/Drain.hh" #include "debug/Ruby.hh" #include "mem/protocol/AccessPermission.hh" #include "mem/ruby/slicc_interface/AbstractController.hh" #include "mem/ruby/system/RubyPort.hh" #include "sim/system.hh" RubyPort::RubyPort(const Params *p) : MemObject(p), m_version(p->version), m_controller(NULL), m_mandatory_q_ptr(NULL), pio_port(csprintf("%s-pio-port", name()), this), m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0), drainManager(NULL), ruby_system(p->ruby_system), system(p->system), waitingOnSequencer(false), access_phys_mem(p->access_phys_mem) { assert(m_version != -1); // create the slave ports based on the number of connected ports for (size_t i = 0; i < p->port_slave_connection_count; ++i) { slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i), this, ruby_system, access_phys_mem)); } // create the master ports based on the number of connected ports for (size_t i = 0; i < p->port_master_connection_count; ++i) { master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i), this)); } } void RubyPort::init() { assert(m_controller != NULL); m_mandatory_q_ptr = m_controller->getMandatoryQueue(); m_mandatory_q_ptr->setSender(this); } BaseMasterPort & RubyPort::getMasterPort(const std::string &if_name, PortID idx) { if (if_name == "pio_port") { return pio_port; } // used by the x86 CPUs to connect the interrupt PIO and interrupt slave // port if (if_name != "master") { // pass it along to our super class return MemObject::getMasterPort(if_name, idx); } else { if (idx >= static_cast(master_ports.size())) { panic("RubyPort::getMasterPort: unknown index %d\n", idx); } return *master_ports[idx]; } } BaseSlavePort & RubyPort::getSlavePort(const std::string &if_name, PortID idx) { // used by the CPUs to connect the caches to the interconnect, and // for the x86 case also the interrupt master if (if_name != "slave") { // pass it along to our super class return MemObject::getSlavePort(if_name, idx); } else { if (idx >= static_cast(slave_ports.size())) { panic("RubyPort::getSlavePort: unknown index %d\n", idx); } return *slave_ports[idx]; } } RubyPort::PioPort::PioPort(const std::string &_name, RubyPort *_port) : QueuedMasterPort(_name, _port, queue), queue(*_port, *this) { DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name); } RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port, RubySystem *_system, bool _access_phys_mem) : QueuedSlavePort(_name, _port, queue), queue(*_port, *this), ruby_port(_port), ruby_system(_system), _onRetryList(false), access_phys_mem(_access_phys_mem) { DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name); } Tick RubyPort::M5Port::recvAtomic(PacketPtr pkt) { panic("RubyPort::M5Port::recvAtomic() not implemented!\n"); return 0; } bool RubyPort::PioPort::recvTimingResp(PacketPtr pkt) { // In FS mode, ruby memory will receive pio responses from devices // and it must forward these responses back to the particular CPU. DPRINTF(RubyPort, "Pio response for address %#x\n", pkt->getAddr()); // First we must retrieve the request port from the sender State RubyPort::SenderState *senderState = safe_cast(pkt->popSenderState()); M5Port *port = senderState->port; assert(port != NULL); delete senderState; port->sendTimingResp(pkt); return true; } bool RubyPort::M5Port::recvTimingReq(PacketPtr pkt) { DPRINTF(RubyPort, "Timing access caught for address %#x\n", pkt->getAddr()); //dsm: based on SimpleTimingPort::recvTimingReq(pkt); if (pkt->memInhibitAsserted()) panic("RubyPort should never see an inhibited request\n"); // Save the port in the sender state object to be used later to // route the response pkt->pushSenderState(new SenderState(this)); // Check for pio requests and directly send them to the dedicated // pio port. if (!isPhysMemAddress(pkt->getAddr())) { assert(ruby_port->pio_port.isConnected()); DPRINTF(RubyPort, "Request for address 0x%#x is assumed to be a pio request\n", pkt->getAddr()); // send next cycle ruby_port->pio_port.schedTimingReq(pkt, curTick() + g_system_ptr->clockPeriod()); return true; } assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <= RubySystem::getBlockSizeBytes()); // Submit the ruby request RequestStatus requestStatus = ruby_port->makeRequest(pkt); // If the request successfully issued then we should return true. // Otherwise, we need to delete the senderStatus we just created and return // false. if (requestStatus == RequestStatus_Issued) { DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr()); return true; } // // Unless one is using the ruby tester, record the stalled M5 port for // later retry when the sequencer becomes free. // if (!ruby_port->m_usingRubyTester) { ruby_port->addToRetryList(this); } DPRINTF(RubyPort, "Request for address %#x did not issue because %s\n", pkt->getAddr(), RequestStatus_to_string(requestStatus)); SenderState* senderState = safe_cast(pkt->senderState); pkt->senderState = senderState->predecessor; delete senderState; return false; } void RubyPort::M5Port::recvFunctional(PacketPtr pkt) { DPRINTF(RubyPort, "Functional access caught for address %#x\n", pkt->getAddr()); // Check for pio requests and directly send them to the dedicated // pio port. if (!isPhysMemAddress(pkt->getAddr())) { assert(ruby_port->pio_port.isConnected()); DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n", pkt->getAddr()); panic("RubyPort::PioPort::recvFunctional() not implemented!\n"); } assert(pkt->getAddr() + pkt->getSize() <= line_address(Address(pkt->getAddr())).getAddress() + RubySystem::getBlockSizeBytes()); bool accessSucceeded = false; bool needsResponse = pkt->needsResponse(); // Do the functional access on ruby memory if (pkt->isRead()) { accessSucceeded = ruby_system->functionalRead(pkt); } else if (pkt->isWrite()) { accessSucceeded = ruby_system->functionalWrite(pkt); } else { panic("RubyPort: unsupported functional command %s\n", pkt->cmdString()); } // Unless the requester explicitly said otherwise, generate an error if // the functional request failed if (!accessSucceeded && !pkt->suppressFuncError()) { fatal("Ruby functional %s failed for address %#x\n", pkt->isWrite() ? "write" : "read", pkt->getAddr()); } if (access_phys_mem) { // The attached physmem contains the official version of data. // The following command performs the real functional access. // This line should be removed once Ruby supplies the official version // of data. ruby_port->system->getPhysMem().functionalAccess(pkt); } // turn packet around to go back to requester if response expected if (needsResponse) { pkt->setFunctionalResponseStatus(accessSucceeded); // @todo There should not be a reverse call since the response is // communicated through the packet pointer // DPRINTF(RubyPort, "Sending packet back over port\n"); // sendFunctional(pkt); } DPRINTF(RubyPort, "Functional access %s!\n", accessSucceeded ? "successful":"failed"); } void RubyPort::ruby_hit_callback(PacketPtr pkt) { // Retrieve the request port from the sender State RubyPort::SenderState *senderState = safe_cast(pkt->senderState); M5Port *port = senderState->port; assert(port != NULL); // pop the sender state from the packet pkt->senderState = senderState->predecessor; delete senderState; port->hitCallback(pkt); // // If we had to stall the M5Ports, wake them up because the sequencer // likely has free resources now. // if (waitingOnSequencer) { // // Record the current list of ports to retry on a temporary list before // calling sendRetry on those ports. sendRetry will cause an // immediate retry, which may result in the ports being put back on the // list. Therefore we want to clear the retryList before calling // sendRetry. // std::list curRetryList(retryList); retryList.clear(); waitingOnSequencer = false; for (std::list::iterator i = curRetryList.begin(); i != curRetryList.end(); ++i) { DPRINTF(RubyPort, "Sequencer may now be free. SendRetry to port %s\n", (*i)->name()); (*i)->onRetryList(false); (*i)->sendRetry(); } } testDrainComplete(); } void RubyPort::testDrainComplete() { //If we weren't able to drain before, we might be able to now. if (drainManager != NULL) { unsigned int drainCount = outstandingCount(); DPRINTF(Drain, "Drain count: %u\n", drainCount); if (drainCount == 0) { DPRINTF(Drain, "RubyPort done draining, signaling drain done\n"); drainManager->signalDrainDone(); // Clear the drain manager once we're done with it. drainManager = NULL; } } } unsigned int RubyPort::getChildDrainCount(DrainManager *dm) { int count = 0; if (pio_port.isConnected()) { count += pio_port.drain(dm); DPRINTF(Config, "count after pio check %d\n", count); } for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { count += (*p)->drain(dm); DPRINTF(Config, "count after slave port check %d\n", count); } for (std::vector::iterator p = master_ports.begin(); p != master_ports.end(); ++p) { count += (*p)->drain(dm); DPRINTF(Config, "count after master port check %d\n", count); } DPRINTF(Config, "final count %d\n", count); return count; } unsigned int RubyPort::drain(DrainManager *dm) { if (isDeadlockEventScheduled()) { descheduleDeadlockEvent(); } // // If the RubyPort is not empty, then it needs to clear all outstanding // requests before it should call drainManager->signalDrainDone() // DPRINTF(Config, "outstanding count %d\n", outstandingCount()); bool need_drain = outstandingCount() > 0; // // Also, get the number of child ports that will also need to clear // their buffered requests before they call drainManager->signalDrainDone() // unsigned int child_drain_count = getChildDrainCount(dm); // Set status if (need_drain) { drainManager = dm; DPRINTF(Drain, "RubyPort not drained\n"); setDrainState(Drainable::Draining); return child_drain_count + 1; } drainManager = NULL; setDrainState(Drainable::Drained); return child_drain_count; } void RubyPort::M5Port::hitCallback(PacketPtr pkt) { bool needsResponse = pkt->needsResponse(); // // Unless specified at configuraiton, all responses except failed SC // and Flush operations access M5 physical memory. // bool accessPhysMem = access_phys_mem; if (pkt->isLLSC()) { if (pkt->isWrite()) { if (pkt->req->getExtraData() != 0) { // // Successful SC packets convert to normal writes // pkt->convertScToWrite(); } else { // // Failed SC packets don't access physical memory and thus // the RubyPort itself must convert it to a response. // accessPhysMem = false; } } else { // // All LL packets convert to normal loads so that M5 PhysMem does // not lock the blocks. // pkt->convertLlToRead(); } } // // Flush requests don't access physical memory // if (pkt->isFlush()) { accessPhysMem = false; } DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse); if (accessPhysMem) { ruby_port->system->getPhysMem().access(pkt); } else if (needsResponse) { pkt->makeResponse(); } // turn packet around to go back to requester if response expected if (needsResponse) { DPRINTF(RubyPort, "Sending packet back over port\n"); // send next cycle schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod()); } else { delete pkt; } DPRINTF(RubyPort, "Hit callback done!\n"); } AddrRangeList RubyPort::M5Port::getAddrRanges() const { // at the moment the assumption is that the master does not care AddrRangeList ranges; return ranges; } bool RubyPort::M5Port::isPhysMemAddress(Addr addr) { return ruby_port->system->isMemAddr(addr); } void RubyPort::ruby_eviction_callback(const Address& address) { DPRINTF(RubyPort, "Sending invalidations.\n"); // This request is deleted in the stack-allocated packet destructor // when this function exits // TODO: should this really be using funcMasterId? RequestPtr req = new Request(address.getAddress(), 0, 0, Request::funcMasterId); // Use a single packet to signal all snooping ports of the invalidation. // This assumes that snooping ports do NOT modify the packet/request Packet pkt(req, MemCmd::InvalidationReq); for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) { // check if the connected master port is snooping if ((*p)->isSnooping()) { // send as a snoop request (*p)->sendTimingSnoopReq(&pkt); } } }