/* * Copyright (c) 1999-2011 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "mem/ruby/system/RubySystem.hh" #include #include #include #include #include "base/intmath.hh" #include "base/statistics.hh" #include "debug/RubyCacheTrace.hh" #include "debug/RubySystem.hh" #include "mem/ruby/common/Address.hh" #include "mem/ruby/network/Network.hh" #include "mem/simple_mem.hh" #include "sim/eventq.hh" #include "sim/simulate.hh" using namespace std; bool RubySystem::m_randomization; uint32_t RubySystem::m_block_size_bytes; uint32_t RubySystem::m_block_size_bits; uint32_t RubySystem::m_memory_size_bits; bool RubySystem::m_warmup_enabled = false; // To look forward to allowing multiple RubySystem instances, track the number // of RubySystems that need to be warmed up on checkpoint restore. unsigned RubySystem::m_systems_to_warmup = 0; bool RubySystem::m_cooldown_enabled = false; RubySystem::RubySystem(const Params *p) : ClockedObject(p), m_access_backing_store(p->access_backing_store), m_cache_recorder(NULL) { m_randomization = p->randomization; m_block_size_bytes = p->block_size_bytes; assert(isPowerOf2(m_block_size_bytes)); m_block_size_bits = floorLog2(m_block_size_bytes); m_memory_size_bits = p->memory_size_bits; // Resize to the size of different machine types m_abstract_controls.resize(MachineType_NUM); // Collate the statistics before they are printed. Stats::registerDumpCallback(new RubyStatsCallback(this)); // Create the profiler m_profiler = new Profiler(p, this); m_phys_mem = p->phys_mem; } void RubySystem::registerNetwork(Network* network_ptr) { m_network = network_ptr; } void RubySystem::registerAbstractController(AbstractController* cntrl) { m_abs_cntrl_vec.push_back(cntrl); MachineID id = cntrl->getMachineID(); m_abstract_controls[id.getType()][id.getNum()] = cntrl; } RubySystem::~RubySystem() { delete m_network; delete m_profiler; } void RubySystem::makeCacheRecorder(uint8_t *uncompressed_trace, uint64_t cache_trace_size, uint64_t block_size_bytes) { vector sequencer_map; Sequencer* sequencer_ptr = NULL; for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) { sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getCPUSequencer()); if (sequencer_ptr == NULL) { sequencer_ptr = sequencer_map[cntrl]; } } assert(sequencer_ptr != NULL); for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) { if (sequencer_map[cntrl] == NULL) { sequencer_map[cntrl] = sequencer_ptr; } } // Remove the old CacheRecorder if it's still hanging about. if (m_cache_recorder != NULL) { delete m_cache_recorder; } // Create the CacheRecorder and record the cache trace m_cache_recorder = new CacheRecorder(uncompressed_trace, cache_trace_size, sequencer_map, block_size_bytes); } void RubySystem::memWriteback() { m_cooldown_enabled = true; // Make the trace so we know what to write back. DPRINTF(RubyCacheTrace, "Recording Cache Trace\n"); makeCacheRecorder(NULL, 0, getBlockSizeBytes()); for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) { m_abs_cntrl_vec[cntrl]->recordCacheTrace(cntrl, m_cache_recorder); } DPRINTF(RubyCacheTrace, "Cache Trace Complete\n"); // save the current tick value Tick curtick_original = curTick(); DPRINTF(RubyCacheTrace, "Recording current tick %ld\n", curtick_original); // Deschedule all prior events on the event queue, but record the tick they // were scheduled at so they can be restored correctly later. list > original_events; while (!eventq->empty()) { Event *curr_head = eventq->getHead(); if (curr_head->isAutoDelete()) { DPRINTF(RubyCacheTrace, "Event %s auto-deletes when descheduled," " not recording\n", curr_head->name()); } else { original_events.push_back(make_pair(curr_head, curr_head->when())); } eventq->deschedule(curr_head); } // Schedule an event to start cache cooldown DPRINTF(RubyCacheTrace, "Starting cache flush\n"); enqueueRubyEvent(curTick()); simulate(); DPRINTF(RubyCacheTrace, "Cache flush complete\n"); // Deschedule any events left on the event queue. while (!eventq->empty()) { eventq->deschedule(eventq->getHead()); } // Restore curTick setCurTick(curtick_original); // Restore all events that were originally on the event queue. This is // done after setting curTick back to its original value so that events do // not seem to be scheduled in the past. while (!original_events.empty()) { pair event = original_events.back(); eventq->schedule(event.first, event.second); original_events.pop_back(); } // No longer flushing back to memory. m_cooldown_enabled = false; // There are several issues with continuing simulation after calling // memWriteback() at the moment, that stem from taking events off the // queue, simulating again, and then putting them back on, whilst // pretending that no time has passed. One is that some events will have // been deleted, so can't be put back. Another is that any object // recording the tick something happens may end up storing a tick in the // future. A simple warning here alerts the user that things may not work // as expected. warn_once("Ruby memory writeback is experimental. Continuing simulation " "afterwards may not always work as intended."); // Keep the cache recorder around so that we can dump the trace if a // checkpoint is immediately taken. } void RubySystem::writeCompressedTrace(uint8_t *raw_data, string filename, uint64_t uncompressed_trace_size) { // Create the checkpoint file for the memory string thefile = CheckpointIn::dir() + "/" + filename.c_str(); int fd = creat(thefile.c_str(), 0664); if (fd < 0) { perror("creat"); fatal("Can't open memory trace file '%s'\n", filename); } gzFile compressedMemory = gzdopen(fd, "wb"); if (compressedMemory == NULL) fatal("Insufficient memory to allocate compression state for %s\n", filename); if (gzwrite(compressedMemory, raw_data, uncompressed_trace_size) != uncompressed_trace_size) { fatal("Write failed on memory trace file '%s'\n", filename); } if (gzclose(compressedMemory)) { fatal("Close failed on memory trace file '%s'\n", filename); } delete[] raw_data; } void RubySystem::serialize(CheckpointOut &cp) const { // Store the cache-block size, so we are able to restore on systems with a // different cache-block size. CacheRecorder depends on the correct // cache-block size upon unserializing. uint64_t block_size_bytes = getBlockSizeBytes(); SERIALIZE_SCALAR(block_size_bytes); // Check that there's a valid trace to use. If not, then memory won't be // up-to-date and the simulation will probably fail when restoring from the // checkpoint. if (m_cache_recorder == NULL) { fatal("Call memWriteback() before serialize() to create ruby trace"); } // Aggregate the trace entries together into a single array uint8_t *raw_data = new uint8_t[4096]; uint64_t cache_trace_size = m_cache_recorder->aggregateRecords(&raw_data, 4096); string cache_trace_file = name() + ".cache.gz"; writeCompressedTrace(raw_data, cache_trace_file, cache_trace_size); SERIALIZE_SCALAR(cache_trace_file); SERIALIZE_SCALAR(cache_trace_size); } void RubySystem::drainResume() { // Delete the cache recorder if it was created in memWriteback() // to checkpoint the current cache state. if (m_cache_recorder) { delete m_cache_recorder; m_cache_recorder = NULL; } } void RubySystem::readCompressedTrace(string filename, uint8_t *&raw_data, uint64_t &uncompressed_trace_size) { // Read the trace file gzFile compressedTrace; // trace file int fd = open(filename.c_str(), O_RDONLY); if (fd < 0) { perror("open"); fatal("Unable to open trace file %s", filename); } compressedTrace = gzdopen(fd, "rb"); if (compressedTrace == NULL) { fatal("Insufficient memory to allocate compression state for %s\n", filename); } raw_data = new uint8_t[uncompressed_trace_size]; if (gzread(compressedTrace, raw_data, uncompressed_trace_size) < uncompressed_trace_size) { fatal("Unable to read complete trace from file %s\n", filename); } if (gzclose(compressedTrace)) { fatal("Failed to close cache trace file '%s'\n", filename); } } void RubySystem::unserialize(CheckpointIn &cp) { uint8_t *uncompressed_trace = NULL; // This value should be set to the checkpoint-system's block-size. // Optional, as checkpoints without it can be run if the // checkpoint-system's block-size == current block-size. uint64_t block_size_bytes = getBlockSizeBytes(); UNSERIALIZE_OPT_SCALAR(block_size_bytes); string cache_trace_file; uint64_t cache_trace_size = 0; UNSERIALIZE_SCALAR(cache_trace_file); UNSERIALIZE_SCALAR(cache_trace_size); cache_trace_file = cp.cptDir + "/" + cache_trace_file; readCompressedTrace(cache_trace_file, uncompressed_trace, cache_trace_size); m_warmup_enabled = true; m_systems_to_warmup++; // Create the cache recorder that will hang around until startup. makeCacheRecorder(uncompressed_trace, cache_trace_size, block_size_bytes); } void RubySystem::startup() { // Ruby restores state from a checkpoint by resetting the clock to 0 and // playing the requests that can possibly re-generate the cache state. // The clock value is set to the actual checkpointed value once all the // requests have been executed. // // This way of restoring state is pretty finicky. For example, if a // Ruby component reads time before the state has been restored, it would // cache this value and hence its clock would not be reset to 0, when // Ruby resets the global clock. This can potentially result in a // deadlock. // // The solution is that no Ruby component should read time before the // simulation starts. And then one also needs to hope that the time // Ruby finishes restoring the state is less than the time when the // state was checkpointed. if (m_warmup_enabled) { DPRINTF(RubyCacheTrace, "Starting ruby cache warmup\n"); // save the current tick value Tick curtick_original = curTick(); // save the event queue head Event* eventq_head = eventq->replaceHead(NULL); // set curTick to 0 and reset Ruby System's clock setCurTick(0); resetClock(); // Schedule an event to start cache warmup enqueueRubyEvent(curTick()); simulate(); delete m_cache_recorder; m_cache_recorder = NULL; m_systems_to_warmup--; if (m_systems_to_warmup == 0) { m_warmup_enabled = false; } // Restore eventq head eventq->replaceHead(eventq_head); // Restore curTick and Ruby System's clock setCurTick(curtick_original); resetClock(); } resetStats(); } void RubySystem::processRubyEvent() { if (getWarmupEnabled()) { m_cache_recorder->enqueueNextFetchRequest(); } else if (getCooldownEnabled()) { m_cache_recorder->enqueueNextFlushRequest(); } } void RubySystem::resetStats() { m_start_cycle = curCycle(); } bool RubySystem::functionalRead(PacketPtr pkt) { Addr address(pkt->getAddr()); Addr line_address = makeLineAddress(address); AccessPermission access_perm = AccessPermission_NotPresent; int num_controllers = m_abs_cntrl_vec.size(); DPRINTF(RubySystem, "Functional Read request for %#x\n", address); unsigned int num_ro = 0; unsigned int num_rw = 0; unsigned int num_busy = 0; unsigned int num_backing_store = 0; unsigned int num_invalid = 0; // In this loop we count the number of controllers that have the given // address in read only, read write and busy states. for (unsigned int i = 0; i < num_controllers; ++i) { access_perm = m_abs_cntrl_vec[i]-> getAccessPermission(line_address); if (access_perm == AccessPermission_Read_Only) num_ro++; else if (access_perm == AccessPermission_Read_Write) num_rw++; else if (access_perm == AccessPermission_Busy) num_busy++; else if (access_perm == AccessPermission_Backing_Store) // See RubySlicc_Exports.sm for details, but Backing_Store is meant // to represent blocks in memory *for Broadcast/Snooping protocols*, // where memory has no idea whether it has an exclusive copy of data // or not. num_backing_store++; else if (access_perm == AccessPermission_Invalid || access_perm == AccessPermission_NotPresent) num_invalid++; } assert(num_rw <= 1); // This if case is meant to capture what happens in a Broadcast/Snoop // protocol where the block does not exist in the cache hierarchy. You // only want to read from the Backing_Store memory if there is no copy in // the cache hierarchy, otherwise you want to try to read the RO or RW // copies existing in the cache hierarchy (covered by the else statement). // The reason is because the Backing_Store memory could easily be stale, if // there are copies floating around the cache hierarchy, so you want to read // it only if it's not in the cache hierarchy at all. if (num_invalid == (num_controllers - 1) && num_backing_store == 1) { DPRINTF(RubySystem, "only copy in Backing_Store memory, read from it\n"); for (unsigned int i = 0; i < num_controllers; ++i) { access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_address); if (access_perm == AccessPermission_Backing_Store) { m_abs_cntrl_vec[i]->functionalRead(line_address, pkt); return true; } } } else if (num_ro > 0 || num_rw == 1) { // In Broadcast/Snoop protocols, this covers if you know the block // exists somewhere in the caching hierarchy, then you want to read any // valid RO or RW block. In directory protocols, same thing, you want // to read any valid readable copy of the block. DPRINTF(RubySystem, "num_busy = %d, num_ro = %d, num_rw = %d\n", num_busy, num_ro, num_rw); // In this loop, we try to figure which controller has a read only or // a read write copy of the given address. Any valid copy would suffice // for a functional read. for (unsigned int i = 0;i < num_controllers;++i) { access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_address); if (access_perm == AccessPermission_Read_Only || access_perm == AccessPermission_Read_Write) { m_abs_cntrl_vec[i]->functionalRead(line_address, pkt); return true; } } } return false; } // The function searches through all the buffers that exist in different // cache, directory and memory controllers, and in the network components // and writes the data portion of those that hold the address specified // in the packet. bool RubySystem::functionalWrite(PacketPtr pkt) { Addr addr(pkt->getAddr()); Addr line_addr = makeLineAddress(addr); AccessPermission access_perm = AccessPermission_NotPresent; int num_controllers = m_abs_cntrl_vec.size(); DPRINTF(RubySystem, "Functional Write request for %#x\n", addr); uint32_t M5_VAR_USED num_functional_writes = 0; for (unsigned int i = 0; i < num_controllers;++i) { num_functional_writes += m_abs_cntrl_vec[i]->functionalWriteBuffers(pkt); access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_addr); if (access_perm != AccessPermission_Invalid && access_perm != AccessPermission_NotPresent) { num_functional_writes += m_abs_cntrl_vec[i]->functionalWrite(line_addr, pkt); } } num_functional_writes += m_network->functionalWrite(pkt); DPRINTF(RubySystem, "Messages written = %u\n", num_functional_writes); return true; } #ifdef CHECK_COHERENCE // This code will check for cases if the given cache block is exclusive in // one node and shared in another-- a coherence violation // // To use, the SLICC specification must call sequencer.checkCoherence(address) // when the controller changes to a state with new permissions. Do this // in setState. The SLICC spec must also define methods "isBlockShared" // and "isBlockExclusive" that are specific to that protocol // void RubySystem::checkGlobalCoherenceInvariant(const Address& addr) { #if 0 NodeID exclusive = -1; bool sharedDetected = false; NodeID lastShared = -1; for (int i = 0; i < m_chip_vector.size(); i++) { if (m_chip_vector[i]->isBlockExclusive(addr)) { if (exclusive != -1) { // coherence violation WARN_EXPR(exclusive); WARN_EXPR(m_chip_vector[i]->getID()); WARN_EXPR(addr); WARN_EXPR(getTime()); ERROR_MSG("Coherence Violation Detected -- 2 exclusive chips"); } else if (sharedDetected) { WARN_EXPR(lastShared); WARN_EXPR(m_chip_vector[i]->getID()); WARN_EXPR(addr); WARN_EXPR(getTime()); ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared"); } else { exclusive = m_chip_vector[i]->getID(); } } else if (m_chip_vector[i]->isBlockShared(addr)) { sharedDetected = true; lastShared = m_chip_vector[i]->getID(); if (exclusive != -1) { WARN_EXPR(lastShared); WARN_EXPR(exclusive); WARN_EXPR(addr); WARN_EXPR(getTime()); ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared"); } } } #endif } #endif RubySystem * RubySystemParams::create() { return new RubySystem(this); }