/* * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * $Id: BarrierGenerator.C 1.3 2005/01/19 13:12:35-06:00 mikem@maya.cs.wisc.edu $ * */ #include "BarrierGenerator.hh" #include "Sequencer.hh" #include "System.hh" #include "RubyConfig.hh" #include "SubBlock.hh" #include "SyntheticDriver.hh" #include "Chip.hh" BarrierGenerator::BarrierGenerator(NodeID node, SyntheticDriver& driver) : m_driver(driver) { m_status = BarrierGeneratorStatus_Thinking; m_last_transition = 0; m_node = node; m_counter = 0; proc_counter = 0; m_local_sense = false; m_total_think = 0; m_think_periods = 0; g_eventQueue_ptr->scheduleEvent(this, 1+(random() % 200)); } BarrierGenerator::~BarrierGenerator() { } void BarrierGenerator::wakeup() { DEBUG_EXPR(TESTER_COMP, MedPrio, m_node); DEBUG_EXPR(TESTER_COMP, MedPrio, m_status); if (m_status == BarrierGeneratorStatus_Thinking) { m_barrier_done = false; m_local_sense = !m_local_sense; m_status = BarrierGeneratorStatus_Test_Pending; m_last_transition = g_eventQueue_ptr->getTime(); initiateTest(); // Test } else if (m_status == BarrierGeneratorStatus_Test_Waiting) { m_status = BarrierGeneratorStatus_Test_Pending; m_last_transition = g_eventQueue_ptr->getTime(); initiateTest(); // Test } else if (m_status == BarrierGeneratorStatus_Release_Waiting) { m_status = BarrierGeneratorStatus_Release_Pending; m_last_transition = g_eventQueue_ptr->getTime(); initiateRelease(); // Test } else if (m_status == BarrierGeneratorStatus_StoreBarrierCounter_Waiting) { m_status = BarrierGeneratorStatus_StoreBarrierCounter_Pending; m_last_transition = g_eventQueue_ptr->getTime(); initiateStoreCtr(); } else if (m_status == BarrierGeneratorStatus_StoreFlag_Waiting) { m_status = BarrierGeneratorStatus_StoreFlag_Pending; m_last_transition = g_eventQueue_ptr->getTime(); initiateStoreFlag(); } else if (m_status == BarrierGeneratorStatus_Holding) { m_status = BarrierGeneratorStatus_Release_Pending; m_last_transition = g_eventQueue_ptr->getTime(); initiateRelease(); // Release } else if (m_status == BarrierGeneratorStatus_Before_Swap) { m_status = BarrierGeneratorStatus_Swap_Pending; m_last_transition = g_eventQueue_ptr->getTime(); initiateSwap(); } else if (m_status == BarrierGeneratorStatus_SpinFlag_Ready) { m_status = BarrierGeneratorStatus_SpinFlag_Pending; m_last_transition = g_eventQueue_ptr->getTime(); initiateLoadFlag(); } else { WARN_EXPR(m_status); ERROR_MSG("Invalid status"); } } void BarrierGenerator::performCallback(NodeID proc, SubBlock& data) { Address address = data.getAddress(); assert(proc == m_node); DEBUG_EXPR(TESTER_COMP, LowPrio, proc); DEBUG_EXPR(TESTER_COMP, LowPrio, m_status); DEBUG_EXPR(TESTER_COMP, LowPrio, address); DEBUG_EXPR(TESTER_COMP, LowPrio, data); if (m_status == BarrierGeneratorStatus_Test_Pending) { uint8 dat = data.readByte(); uint8 lock = dat >> 7; if (lock == 1) { // Locked - keep spinning m_status = BarrierGeneratorStatus_Test_Waiting; m_last_transition = g_eventQueue_ptr->getTime(); g_eventQueue_ptr->scheduleEvent(this, waitTime()); } else { // Unlocked - try the swap m_driver.recordTestLatency(g_eventQueue_ptr->getTime() - m_last_transition); m_status = BarrierGeneratorStatus_Before_Swap; m_last_transition = g_eventQueue_ptr->getTime(); g_eventQueue_ptr->scheduleEvent(this, waitTime()); } } else if (m_status == BarrierGeneratorStatus_Swap_Pending) { m_driver.recordSwapLatency(g_eventQueue_ptr->getTime() - m_last_transition); uint8 dat = data.readByte(); uint8 lock = dat >> 7; if (lock == 1) { // We failed to aquire the lock m_status = BarrierGeneratorStatus_Test_Waiting; m_last_transition = g_eventQueue_ptr->getTime(); g_eventQueue_ptr->scheduleEvent(this, waitTime()); } else { // We acquired the lock dat = dat | 0x80; data.writeByte(dat); m_status = BarrierGeneratorStatus_StoreBarrierCounter_Waiting; m_last_transition = g_eventQueue_ptr->getTime(); DEBUG_MSG(TESTER_COMP, HighPrio, "Acquired"); DEBUG_EXPR(TESTER_COMP, HighPrio, proc); DEBUG_EXPR(TESTER_COMP, HighPrio, g_eventQueue_ptr->getTime()); // g_eventQueue_ptr->scheduleEvent(this, holdTime()); g_eventQueue_ptr->scheduleEvent(this, 1); // initiateLoadCtr(); } } else if (m_status == BarrierGeneratorStatus_StoreBarrierCounter_Pending) { // if value == p, reset counter and set local sense flag uint8 ctr = data.readByte(); //uint8 sense = ctr >> 4; ctr = ctr & 0x0F; ctr++; data.writeByte( ctr | 0x80); // store counter and lock //cout << m_node << " incremented Barrier_ctr to " << (int)ctr << ", " << data << "\n"; if (ctr == (uint8) 16) { data.writeByte( 0x0 ); m_status = BarrierGeneratorStatus_StoreFlag_Waiting; m_barrier_done = true; g_eventQueue_ptr->scheduleEvent(this, 1); } else { m_status = BarrierGeneratorStatus_Release_Waiting; g_eventQueue_ptr->scheduleEvent(this, 1); } } else if (m_status == BarrierGeneratorStatus_StoreFlag_Pending) { // write flag if (m_local_sense) { data.writeByte( 0x01 ); } else { data.writeByte( 0x00 ); } m_status = BarrierGeneratorStatus_Release_Waiting; g_eventQueue_ptr->scheduleEvent(this, 1); } else if (m_status == BarrierGeneratorStatus_Release_Pending) { m_driver.recordReleaseLatency(g_eventQueue_ptr->getTime() - m_last_transition); // We're releasing the lock uint8 dat = data.readByte(); dat = dat & 0x7F; data.writeByte(dat); if (m_barrier_done) { m_counter++; proc_counter++; if (m_counter < g_tester_length) { m_status = BarrierGeneratorStatus_Thinking; m_last_transition = g_eventQueue_ptr->getTime(); g_eventQueue_ptr->scheduleEvent(this, thinkTime()); } else { m_driver.reportDone(proc_counter, m_node); m_last_transition = g_eventQueue_ptr->getTime(); } } else { m_status = BarrierGeneratorStatus_SpinFlag_Ready; m_last_transition = g_eventQueue_ptr->getTime(); g_eventQueue_ptr->scheduleEvent(this, waitTime()); } } else if (m_status == BarrierGeneratorStatus_SpinFlag_Pending) { uint8 sense = data.readByte(); if (sense != m_local_sense) { m_status = BarrierGeneratorStatus_SpinFlag_Ready; m_last_transition = g_eventQueue_ptr->getTime(); g_eventQueue_ptr->scheduleEvent(this, waitTime()); } else { m_counter++; proc_counter++; if (m_counter < g_tester_length) { m_status = BarrierGeneratorStatus_Thinking; m_last_transition = g_eventQueue_ptr->getTime(); g_eventQueue_ptr->scheduleEvent(this, thinkTime()); } else { m_driver.reportDone(proc_counter, m_node); m_status = BarrierGeneratorStatus_Done; m_last_transition = g_eventQueue_ptr->getTime(); } } } else { WARN_EXPR(m_status); ERROR_MSG("Invalid status"); } } int BarrierGenerator::thinkTime() { int ret; float ratio = g_think_fudge_factor; // return 400; if (ratio == 0) { return g_think_time; } int r = random(); int x = (int) ( (float)g_think_time*ratio*2.0); int mod = r % x; int rand = ( mod+1 - ((float)g_think_time*ratio) ); ret = (g_think_time + rand); m_total_think += ret; m_think_periods++; return ret; } int BarrierGenerator::waitTime() const { return g_wait_time; } void BarrierGenerator::initiateTest() { DEBUG_MSG(TESTER_COMP, MedPrio, "initiating Test"); sequencer()->makeRequest(CacheMsg(Address(0x40), CacheRequestType_LD, Address(1), AccessModeType_UserMode, 1, PrefetchBit_No, 0, false)); } void BarrierGenerator::initiateSwap() { DEBUG_MSG(TESTER_COMP, MedPrio, "initiating Swap"); sequencer()->makeRequest(CacheMsg(Address(0x40), CacheRequestType_ATOMIC, Address(2), AccessModeType_UserMode, 1, PrefetchBit_No, 0, false)); } void BarrierGenerator::initiateRelease() { DEBUG_MSG(TESTER_COMP, MedPrio, "initiating Release"); sequencer()->makeRequest(CacheMsg(Address(0x40), CacheRequestType_ST, Address(3), AccessModeType_UserMode, 1, PrefetchBit_No, 0, false)); } void BarrierGenerator::initiateLoadCtr() { DEBUG_MSG(TESTER_COMP, MedPrio, "initiating load of barrier counter"); sequencer()->makeRequest(CacheMsg(Address(0x40), CacheRequestType_LD, Address(3), AccessModeType_UserMode, 1, PrefetchBit_No, 0, false)); } void BarrierGenerator::initiateStoreCtr() { DEBUG_MSG(TESTER_COMP, MedPrio, "initiating load of barrier counter"); sequencer()->makeRequest(CacheMsg(Address(0x40), CacheRequestType_ST, Address(3), AccessModeType_UserMode, 1, PrefetchBit_No, 0, false)); } void BarrierGenerator::initiateStoreFlag() { DEBUG_MSG(TESTER_COMP, MedPrio, "initiating load of barrier counter"); sequencer()->makeRequest(CacheMsg(Address(0x00), CacheRequestType_ST, Address(3), AccessModeType_UserMode, 1, PrefetchBit_No, 0, false)); } void BarrierGenerator::initiateLoadFlag() { DEBUG_MSG(TESTER_COMP, MedPrio, "initiating load of barrier counter"); sequencer()->makeRequest(CacheMsg(Address(0x00), CacheRequestType_LD, Address(3), AccessModeType_UserMode, 1, PrefetchBit_No, 0, false)); } Sequencer* BarrierGenerator::sequencer() const { return g_system_ptr->getChip(m_node/RubyConfig::numberOfProcsPerChip())->getSequencer(m_node%RubyConfig::numberOfProcsPerChip()); } void BarrierGenerator::print(ostream& out) const { }