/* * Copyright (c) 2010-2013, 2015 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Ron Dreslinski * Ali Saidi * Andreas Hansson */ #include "mem/simple_mem.hh" #include "base/random.hh" #include "base/trace.hh" #include "debug/Drain.hh" SimpleMemory::SimpleMemory(const SimpleMemoryParams* p) : AbstractMemory(p), port(name() + ".port", *this), latency(p->latency), latency_var(p->latency_var), bandwidth(p->bandwidth), isBusy(false), retryReq(false), retryResp(false), releaseEvent([this]{ release(); }, name()), dequeueEvent([this]{ dequeue(); }, name()) { } void SimpleMemory::init() { AbstractMemory::init(); // allow unconnected memories as this is used in several ruby // systems at the moment if (port.isConnected()) { port.sendRangeChange(); } } Tick SimpleMemory::recvAtomic(PacketPtr pkt) { panic_if(pkt->cacheResponding(), "Should not see packets where cache " "is responding"); access(pkt); return getLatency(); } void SimpleMemory::recvFunctional(PacketPtr pkt) { pkt->pushLabel(name()); functionalAccess(pkt); bool done = false; auto p = packetQueue.begin(); // potentially update the packets in our packet queue as well while (!done && p != packetQueue.end()) { done = pkt->trySatisfyFunctional(p->pkt); ++p; } pkt->popLabel(); } bool SimpleMemory::recvTimingReq(PacketPtr pkt) { panic_if(pkt->cacheResponding(), "Should not see packets where cache " "is responding"); panic_if(!(pkt->isRead() || pkt->isWrite()), "Should only see read and writes at memory controller, " "saw %s to %#llx\n", pkt->cmdString(), pkt->getAddr()); // we should not get a new request after committing to retry the // current one, but unfortunately the CPU violates this rule, so // simply ignore it for now if (retryReq) return false; // if we are busy with a read or write, remember that we have to // retry if (isBusy) { retryReq = true; return false; } // technically the packet only reaches us after the header delay, // and since this is a memory controller we also need to // deserialise the payload before performing any write operation Tick receive_delay = pkt->headerDelay + pkt->payloadDelay; pkt->headerDelay = pkt->payloadDelay = 0; // update the release time according to the bandwidth limit, and // do so with respect to the time it takes to finish this request // rather than long term as it is the short term data rate that is // limited for any real memory // calculate an appropriate tick to release to not exceed // the bandwidth limit Tick duration = pkt->getSize() * bandwidth; // only consider ourselves busy if there is any need to wait // to avoid extra events being scheduled for (infinitely) fast // memories if (duration != 0) { schedule(releaseEvent, curTick() + duration); isBusy = true; } // go ahead and deal with the packet and put the response in the // queue if there is one bool needsResponse = pkt->needsResponse(); recvAtomic(pkt); // turn packet around to go back to requester if response expected if (needsResponse) { // recvAtomic() should already have turned packet into // atomic response assert(pkt->isResponse()); Tick when_to_send = curTick() + receive_delay + getLatency(); // typically this should be added at the end, so start the // insertion sort with the last element, also make sure not to // re-order in front of some existing packet with the same // address, the latter is important as this memory effectively // hands out exclusive copies (shared is not asserted) auto i = packetQueue.end(); --i; while (i != packetQueue.begin() && when_to_send < i->tick && i->pkt->getAddr() != pkt->getAddr()) --i; // emplace inserts the element before the position pointed to by // the iterator, so advance it one step packetQueue.emplace(++i, pkt, when_to_send); if (!retryResp && !dequeueEvent.scheduled()) schedule(dequeueEvent, packetQueue.back().tick); } else { pendingDelete.reset(pkt); } return true; } void SimpleMemory::release() { assert(isBusy); isBusy = false; if (retryReq) { retryReq = false; port.sendRetryReq(); } } void SimpleMemory::dequeue() { assert(!packetQueue.empty()); DeferredPacket deferred_pkt = packetQueue.front(); retryResp = !port.sendTimingResp(deferred_pkt.pkt); if (!retryResp) { packetQueue.pop_front(); // if the queue is not empty, schedule the next dequeue event, // otherwise signal that we are drained if we were asked to do so if (!packetQueue.empty()) { // if there were packets that got in-between then we // already have an event scheduled, so use re-schedule reschedule(dequeueEvent, std::max(packetQueue.front().tick, curTick()), true); } else if (drainState() == DrainState::Draining) { DPRINTF(Drain, "Draining of SimpleMemory complete\n"); signalDrainDone(); } } } Tick SimpleMemory::getLatency() const { return latency + (latency_var ? random_mt.random(0, latency_var) : 0); } void SimpleMemory::recvRespRetry() { assert(retryResp); dequeue(); } BaseSlavePort & SimpleMemory::getSlavePort(const std::string &if_name, PortID idx) { if (if_name != "port") { return MemObject::getSlavePort(if_name, idx); } else { return port; } } DrainState SimpleMemory::drain() { if (!packetQueue.empty()) { DPRINTF(Drain, "SimpleMemory Queue has requests, waiting to drain\n"); return DrainState::Draining; } else { return DrainState::Drained; } } SimpleMemory::MemoryPort::MemoryPort(const std::string& _name, SimpleMemory& _memory) : SlavePort(_name, &_memory), memory(_memory) { } AddrRangeList SimpleMemory::MemoryPort::getAddrRanges() const { AddrRangeList ranges; ranges.push_back(memory.getAddrRange()); return ranges; } Tick SimpleMemory::MemoryPort::recvAtomic(PacketPtr pkt) { return memory.recvAtomic(pkt); } void SimpleMemory::MemoryPort::recvFunctional(PacketPtr pkt) { memory.recvFunctional(pkt); } bool SimpleMemory::MemoryPort::recvTimingReq(PacketPtr pkt) { return memory.recvTimingReq(pkt); } void SimpleMemory::MemoryPort::recvRespRetry() { memory.recvRespRetry(); } SimpleMemory* SimpleMemoryParams::create() { return new SimpleMemory(this); }