/* * Copyright 2019 Google Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black */ #ifndef __SIM_GUEST_ABI_HH__ #define __SIM_GUEST_ABI_HH__ #include #include #include #include class ThreadContext; namespace GuestABI { /* * To implement an ABI, a subclass needs to implement a system of * specializations of these two templates Result and Argument, and define a * "Position" type. * * The Position type carries information about, for instance, how many * integer registers have been consumed gathering earlier arguments. It * may contain multiple elements if there are multiple dimensions to track, * for instance the number of integer and floating point registers used so far. * * Result and Argument are class templates instead of function templates so * that they can be partially specialized if necessary. C++ doesn't let you * partially specialize function templates because that conflicts with * template resolution using the function's arguments. Since we already know * what type we want and we don't need argument based resolution, we can just * wrap the desired functionality in classes and sidestep the problem. * * Also note that these templates have an "Enabled" parameter to support * std::enable_if style conditional specializations. */ template struct Result { private: /* * Store result "ret" into the state accessible through tc. * * Note that the declaration below is only to document the expected * signature and is private so it won't be used by accident. * Specializations of this Result class should define their own version * of this method which actually does something and is public. */ static void store(ThreadContext *tc, const Ret &ret); /* * Adjust the position of arguments based on the return type, if necessary. * * This method can be excluded if no adjustment is necessary. */ static void allocate(ThreadContext *tc, typename ABI::Position &position); }; /* * This partial specialization prevents having to special case 'void' when * working with return types. */ template struct Result {}; template struct Argument { /* * Retrieve an argument of type Arg from the state accessible through tc, * assuming the state represented by "position" has already been used. * Also update position to account for this argument as well. * * Like Result::store above, the declaration below is only to document * the expected method signature. */ static Arg get(ThreadContext *tc, typename ABI::Position &position); }; /* * This struct template provides a default allocate() method in case the * Result template doesn't provide one. This is the default in cases where the * return type doesn't affect how arguments are laid out. */ template struct ResultAllocator { static void allocate(ThreadContext *tc, typename ABI::Position &position) {} }; /* * If the return type *does* affect how the arguments are laid out, the ABI * can implement an allocate() method for the various return types, and this * specialization will call into it. */ template struct ResultAllocator::allocate)> { static void allocate(ThreadContext *tc, typename ABI::Position &position) { Result::allocate(tc, position); } }; /* * These templates implement a variadic argument mechanism for guest ABI * functions. A function might be written like this: * * void * func(ThreadContext *tc, VarArgs varargs) * { * warn("Address = %#x, int = %d.", * varargs.get(), varargs.get()); * } * * where an object of type VarArgs<...> is its last argument. The types given * to the template specify what types the function might need to retrieve from * varargs. The varargs object will then have get<> methods for each of those * types. * * Note that each get<> will happen live. If you modify values through the * ThreadContext *tc and then run get<>(), you may alter one of your arguments. * If you're going to use tc to modify state, it would be a good idea to use * get<>() as soon as possible to avoid corrupting the functions arguments. */ // A recursive template which defines virtual functions to retrieve each of the // requested types. This provides the ABI agnostic interface the function uses. template class VarArgsBase; template class VarArgsBase : public VarArgsBase { public: // The virtual function takes a reference parameter so that the different // _getImpl methods can co-exist through overloading. virtual void _getImpl(First &) = 0; // Make sure base class _getImpl-es aren't hidden by this one. using VarArgsBase::_getImpl; }; // The base case of the recursion. template <> class VarArgsBase<> { protected: // This just gives the "using" statement in the non base case something to // refer to. void _getImpl(); }; // A recursive template which defines the ABI specific implementation of the // interface defined above. // // The types in Types are consumed one by one, and by // the time we get down to the base case we'd have lost track of the complete // set we need to know what interface to inherit. The Base parameter keeps // track of that through the recursion. template class VarArgsImpl; template class VarArgsImpl : public VarArgsImpl { protected: // Bring forward the base class constructor. using VarArgsImpl::VarArgsImpl; // Make sure base class _getImpl-es don't get hidden by ours. using VarArgsImpl::_getImpl; // Implement a version of _getImple, using the ABI specialized version of // the Argument class. void _getImpl(First &first) override { first = Argument::get(this->tc, this->position); } }; // The base case of the recursion, which inherits from the interface class. template class VarArgsImpl : public Base { protected: // Declare state to pass to the Argument<>::get methods. ThreadContext *tc; typename ABI::Position position; // Give the "using" statement in our subclass something to refer to. void _getImpl(); public: VarArgsImpl(ThreadContext *_tc, const typename ABI::Position &_pos) : tc(_tc), position(_pos) {} }; // A wrapper which provides a nice interface to the virtual functions, and a // hook for the Argument template mechanism. template class VarArgs { private: // This points to the implementation which knows how to read arguments // based on the ABI being used. std::shared_ptr> _ptr; public: VarArgs(VarArgsBase *ptr) : _ptr(ptr) {} // This template is a friendlier wrapper around the virtual functions the // raw interface provides. This version lets you pick a type which it then // returns, instead of having to pre-declare a variable to pass in. template Arg get() { Arg arg; _ptr->_getImpl(arg); return arg; } }; template std::ostream & operator << (std::ostream &os, const VarArgs &va) { os << "..."; return os; } // The ABI independent hook which tells the GuestABI mechanism what to do with // a VarArgs argument. It constructs the underlying implementation which knows // about the ABI, and installs it in the VarArgs wrapper to give to the // function. template struct Argument> { static VarArgs get(ThreadContext *tc, typename ABI::Position &position) { using Base = VarArgsBase; using Impl = VarArgsImpl; return VarArgs(new Impl(tc, position)); } }; /* * These functions will likely be common among all ABIs and implement the * mechanism of gathering arguments, calling the target function, and then * storing the result. They might need to be overridden if, for instance, * the location of arguments need to be determined in a different order. * For example, there might be an ABI which gathers arguments starting * from the last in the list instead of the first. This is unlikely but * still possible to support by redefining these functions.. */ // With no arguments to gather, call the target function and store the // result. template static typename std::enable_if::value, Ret>::type callFrom(ThreadContext *tc, typename ABI::Position &position, std::function target) { Ret ret = target(tc); Result::store(tc, ret); return ret; } // With no arguments to gather and nothing to return, call the target function. template static void callFrom(ThreadContext *tc, typename ABI::Position &position, std::function target) { target(tc); } // Recursively gather arguments for target from tc until we get to the base // case above. template static typename std::enable_if::value, Ret>::type callFrom(ThreadContext *tc, typename ABI::Position &position, std::function target) { // Extract the next argument from the thread context. NextArg next = Argument::get(tc, position); // Build a partial function which adds the next argument to the call. std::function partial = [target,next](ThreadContext *_tc, Args... args) { return target(_tc, next, args...); }; // Recursively handle any remaining arguments. return callFrom(tc, position, partial); } // Recursively gather arguments for target from tc until we get to the base // case above. This version is for functions that don't return anything. template static void callFrom(ThreadContext *tc, typename ABI::Position &position, std::function target) { // Extract the next argument from the thread context. NextArg next = Argument::get(tc, position); // Build a partial function which adds the next argument to the call. std::function partial = [target,next](ThreadContext *_tc, Args... args) { target(_tc, next, args...); }; // Recursively handle any remaining arguments. callFrom(tc, position, partial); } /* * These functions are like the ones above, except they print the arguments * a target function would be called with instead of actually calling it. */ // With no arguments to print, add the closing parenthesis and return. template static void dumpArgsFrom(int count, std::ostream &os, ThreadContext *tc, typename ABI::Position &position) { os << ")"; } // Recursively gather arguments for target from tc until we get to the base // case above, and append those arguments to the string stream being // constructed. template static void dumpArgsFrom(int count, std::ostream &os, ThreadContext *tc, typename ABI::Position &position) { // Either open the parenthesis or add a comma, depending on where we are // in the argument list. os << (count ? ", " : "("); // Extract the next argument from the thread context. NextArg next = Argument::get(tc, position); // Add this argument to the list. os << next; // Recursively handle any remaining arguments. dumpArgsFrom(count + 1, os, tc, position); } } // namespace GuestABI // These functions wrap a simulator level function with the given signature. // The wrapper takes one argument, a thread context to extract arguments from // and write a result (if any) back to. For convenience, the wrapper also // returns the result of the wrapped function. template Ret invokeSimcall(ThreadContext *tc, std::function target) { // Default construct a Position to track consumed resources. Built in // types will be zero initialized. auto position = typename ABI::Position(); GuestABI::ResultAllocator::allocate(tc, position); return GuestABI::callFrom(tc, position, target); } template Ret invokeSimcall(ThreadContext *tc, Ret (*target)(ThreadContext *, Args...)) { return invokeSimcall( tc, std::function(target)); } template void invokeSimcall(ThreadContext *tc, std::function target) { // Default construct a Position to track consumed resources. Built in // types will be zero initialized. auto position = typename ABI::Position(); GuestABI::callFrom(tc, position, target); } template void invokeSimcall(ThreadContext *tc, void (*target)(ThreadContext *, Args...)) { invokeSimcall( tc, std::function(target)); } // These functions also wrap a simulator level function. Instead of running the // function, they return a string which shows what arguments the function would // be invoked with if it were called from the given context. template std::string dumpSimcall(std::string name, ThreadContext *tc, std::function target= std::function()) { auto position = typename ABI::Position(); std::ostringstream ss; GuestABI::ResultAllocator::allocate(tc, position); ss << name; GuestABI::dumpArgsFrom(0, ss, tc, position); return ss.str(); } template std::string dumpSimcall(std::string name, ThreadContext *tc, Ret (*target)(ThreadContext *, Args...)) { return dumpSimcall( name, tc, std::function(target)); } #endif // __SIM_GUEST_ABI_HH__