/*
 * Copyright (c) 2001-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Nathan Binkert
 *          Steve Reinhardt
 *          Ali Saidi
 */

#include <unistd.h>
#include <fcntl.h>

#include <string>

#include "base/intmath.hh"
#include "base/loader/object_file.hh"
#include "base/loader/symtab.hh"
#include "base/statistics.hh"
#include "config/full_system.hh"
#include "cpu/thread_context.hh"
#include "mem/page_table.hh"
#include "mem/physical.hh"
#include "mem/translating_port.hh"
#include "sim/builder.hh"
#include "sim/process.hh"
#include "sim/stats.hh"
#include "sim/syscall_emul.hh"
#include "sim/system.hh"

#include "arch/isa_specific.hh"
#if THE_ISA == ALPHA_ISA
#include "arch/alpha/linux/process.hh"
#include "arch/alpha/tru64/process.hh"
#elif THE_ISA == SPARC_ISA
#include "arch/sparc/linux/process.hh"
#include "arch/sparc/solaris/process.hh"
#elif THE_ISA == MIPS_ISA
#include "arch/mips/linux/process.hh"
#else
#error "THE_ISA not set"
#endif


using namespace std;
using namespace TheISA;

//
// The purpose of this code is to fake the loader & syscall mechanism
// when there's no OS: thus there's no resone to use it in FULL_SYSTEM
// mode when we do have an OS
//
#if FULL_SYSTEM
#error "process.cc not compatible with FULL_SYSTEM"
#endif

// current number of allocated processes
int num_processes = 0;

Process::Process(const string &nm,
                 System *_system,
                 int stdin_fd, 	// initial I/O descriptors
                 int stdout_fd,
                 int stderr_fd)
    : SimObject(nm), system(_system)
{
    // initialize first 3 fds (stdin, stdout, stderr)
    fd_map[STDIN_FILENO] = stdin_fd;
    fd_map[STDOUT_FILENO] = stdout_fd;
    fd_map[STDERR_FILENO] = stderr_fd;

    // mark remaining fds as free
    for (int i = 3; i <= MAX_FD; ++i) {
        fd_map[i] = -1;
    }

    mmap_start = mmap_end = 0;
    nxm_start = nxm_end = 0;
    pTable = new PageTable(system);
    // other parameters will be initialized when the program is loaded
}


void
Process::regStats()
{
    using namespace Stats;

    num_syscalls
        .name(name() + ".PROG:num_syscalls")
        .desc("Number of system calls")
        ;
}

//
// static helper functions
//
int
Process::openInputFile(const string &filename)
{
    int fd = open(filename.c_str(), O_RDONLY);

    if (fd == -1) {
        perror(NULL);
        cerr << "unable to open \"" << filename << "\" for reading\n";
        fatal("can't open input file");
    }

    return fd;
}


int
Process::openOutputFile(const string &filename)
{
    int fd = open(filename.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0774);

    if (fd == -1) {
        perror(NULL);
        cerr << "unable to open \"" << filename << "\" for writing\n";
        fatal("can't open output file");
    }

    return fd;
}


int
Process::registerThreadContext(ThreadContext *tc)
{
    // add to list
    int myIndex = threadContexts.size();
    threadContexts.push_back(tc);

    // return CPU number to caller
    return myIndex;
}

void
Process::startup()
{
    if (threadContexts.empty())
        fatal("Process %s is not associated with any CPUs!\n", name());

    // first thread context for this process... initialize & enable
    ThreadContext *tc = threadContexts[0];

    // mark this context as active so it will start ticking.
    tc->activate(0);

    Port *mem_port;
    mem_port = system->physmem->getPort("functional");
    initVirtMem = new TranslatingPort("process init port", pTable, true);
    mem_port->setPeer(initVirtMem);
    initVirtMem->setPeer(mem_port);
}

void
Process::replaceThreadContext(ThreadContext *tc, int tcIndex)
{
    if (tcIndex >= threadContexts.size()) {
        panic("replaceThreadContext: bad tcIndex, %d >= %d\n",
              tcIndex, threadContexts.size());
    }

    threadContexts[tcIndex] = tc;
}

// map simulator fd sim_fd to target fd tgt_fd
void
Process::dup_fd(int sim_fd, int tgt_fd)
{
    if (tgt_fd < 0 || tgt_fd > MAX_FD)
        panic("Process::dup_fd tried to dup past MAX_FD (%d)", tgt_fd);

    fd_map[tgt_fd] = sim_fd;
}


// generate new target fd for sim_fd
int
Process::alloc_fd(int sim_fd)
{
    // in case open() returns an error, don't allocate a new fd
    if (sim_fd == -1)
        return -1;

    // find first free target fd
    for (int free_fd = 0; free_fd < MAX_FD; ++free_fd) {
        if (fd_map[free_fd] == -1) {
            fd_map[free_fd] = sim_fd;
            return free_fd;
        }
    }

    panic("Process::alloc_fd: out of file descriptors!");
}


// free target fd (e.g., after close)
void
Process::free_fd(int tgt_fd)
{
    if (fd_map[tgt_fd] == -1)
        warn("Process::free_fd: request to free unused fd %d", tgt_fd);

    fd_map[tgt_fd] = -1;
}


// look up simulator fd for given target fd
int
Process::sim_fd(int tgt_fd)
{
    if (tgt_fd > MAX_FD)
        return -1;

    return fd_map[tgt_fd];
}

void
Process::serialize(std::ostream &os)
{
    SERIALIZE_SCALAR(initialContextLoaded);
    SERIALIZE_SCALAR(brk_point);
    SERIALIZE_SCALAR(stack_base);
    SERIALIZE_SCALAR(stack_size);
    SERIALIZE_SCALAR(stack_min);
    SERIALIZE_SCALAR(next_thread_stack_base);
    SERIALIZE_SCALAR(mmap_start);
    SERIALIZE_SCALAR(mmap_end);
    SERIALIZE_SCALAR(nxm_start);
    SERIALIZE_SCALAR(nxm_end);
    SERIALIZE_ARRAY(fd_map, MAX_FD);

    pTable->serialize(os);
}

void
Process::unserialize(Checkpoint *cp, const std::string &section)
{
    UNSERIALIZE_SCALAR(initialContextLoaded);
    UNSERIALIZE_SCALAR(brk_point);
    UNSERIALIZE_SCALAR(stack_base);
    UNSERIALIZE_SCALAR(stack_size);
    UNSERIALIZE_SCALAR(stack_min);
    UNSERIALIZE_SCALAR(next_thread_stack_base);
    UNSERIALIZE_SCALAR(mmap_start);
    UNSERIALIZE_SCALAR(mmap_end);
    UNSERIALIZE_SCALAR(nxm_start);
    UNSERIALIZE_SCALAR(nxm_end);
    UNSERIALIZE_ARRAY(fd_map, MAX_FD);

    pTable->unserialize(cp, section);
}


//
// need to declare these here since there is no concrete Process type
// that can be constructed (i.e., no REGISTER_SIM_OBJECT() macro call,
// which is where these get declared for concrete types).
//
DEFINE_SIM_OBJECT_CLASS_NAME("Process", Process)


////////////////////////////////////////////////////////////////////////
//
// LiveProcess member definitions
//
////////////////////////////////////////////////////////////////////////


void
copyStringArray(vector<string> &strings, Addr array_ptr, Addr data_ptr,
                TranslatingPort* memPort)
{
    Addr data_ptr_swap;
    for (int i = 0; i < strings.size(); ++i) {
        data_ptr_swap = htog(data_ptr);
        memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr_swap, sizeof(Addr));
        memPort->writeString(data_ptr, strings[i].c_str());
        array_ptr += sizeof(Addr);
        data_ptr += strings[i].size() + 1;
    }
    // add NULL terminator
    data_ptr = 0;

    memPort->writeBlob(array_ptr, (uint8_t*)&data_ptr, sizeof(Addr));
}

LiveProcess::LiveProcess(const string &nm, ObjectFile *_objFile,
                         System *_system,
                         int stdin_fd, int stdout_fd, int stderr_fd,
                         vector<string> &_argv, vector<string> &_envp,
                         const string &_cwd,
                         uint64_t _uid, uint64_t _euid,
                         uint64_t _gid, uint64_t _egid,
                         uint64_t _pid, uint64_t _ppid)
    : Process(nm, _system, stdin_fd, stdout_fd, stderr_fd),
      objFile(_objFile), argv(_argv), envp(_envp), cwd(_cwd)
{
    __uid = _uid;
    __euid = _euid;
    __gid = _gid;
    __egid = _egid;
    __pid = _pid;
    __ppid = _ppid;

    prog_fname = argv[0];

    // load up symbols, if any... these may be used for debugging or
    // profiling.
    if (!debugSymbolTable) {
        debugSymbolTable = new SymbolTable();
        if (!objFile->loadGlobalSymbols(debugSymbolTable) ||
            !objFile->loadLocalSymbols(debugSymbolTable)) {
            // didn't load any symbols
            delete debugSymbolTable;
            debugSymbolTable = NULL;
        }
    }
}

void
LiveProcess::argsInit(int intSize, int pageSize)
{
    Process::startup();

    // load object file into target memory
    objFile->loadSections(initVirtMem);

    // Calculate how much space we need for arg & env arrays.
    int argv_array_size = intSize * (argv.size() + 1);
    int envp_array_size = intSize * (envp.size() + 1);
    int arg_data_size = 0;
    for (int i = 0; i < argv.size(); ++i) {
        arg_data_size += argv[i].size() + 1;
    }
    int env_data_size = 0;
    for (int i = 0; i < envp.size(); ++i) {
        env_data_size += envp[i].size() + 1;
    }

    int space_needed =
        argv_array_size + envp_array_size + arg_data_size + env_data_size;
    if (space_needed < 32*1024)
        space_needed = 32*1024;

    // set bottom of stack
    stack_min = stack_base - space_needed;
    // align it
    stack_min = roundDown(stack_min, pageSize);
    stack_size = stack_base - stack_min;
    // map memory
    pTable->allocate(stack_min, roundUp(stack_size, pageSize));

    // map out initial stack contents
    Addr argv_array_base = stack_min + intSize; // room for argc
    Addr envp_array_base = argv_array_base + argv_array_size;
    Addr arg_data_base = envp_array_base + envp_array_size;
    Addr env_data_base = arg_data_base + arg_data_size;

    // write contents to stack
    uint64_t argc = argv.size();
    if (intSize == 8)
        argc = htog((uint64_t)argc);
    else if (intSize == 4)
        argc = htog((uint32_t)argc);
    else
        panic("Unknown int size");

    initVirtMem->writeBlob(stack_min, (uint8_t*)&argc, intSize);

    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);

    threadContexts[0]->setIntReg(ArgumentReg0, argc);
    threadContexts[0]->setIntReg(ArgumentReg1, argv_array_base);
    threadContexts[0]->setIntReg(StackPointerReg, stack_min);

    Addr prog_entry = objFile->entryPoint();
    threadContexts[0]->setPC(prog_entry);
    threadContexts[0]->setNextPC(prog_entry + sizeof(MachInst));

#if THE_ISA != ALPHA_ISA //e.g. MIPS or Sparc
    threadContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst)));
#endif

    num_processes++;
}

void
LiveProcess::syscall(int64_t callnum, ThreadContext *tc)
{
    num_syscalls++;

    SyscallDesc *desc = getDesc(callnum);
    if (desc == NULL)
        fatal("Syscall %d out of range", callnum);

    desc->doSyscall(callnum, this, tc);
}

LiveProcess *
LiveProcess::create(const std::string &nm, System *system, int stdin_fd,
                    int stdout_fd, int stderr_fd, std::string executable,
                    std::vector<std::string> &argv,
                    std::vector<std::string> &envp,
                    const std::string &cwd,
                    uint64_t _uid, uint64_t _euid,
                    uint64_t _gid, uint64_t _egid,
                    uint64_t _pid, uint64_t _ppid)
{
    LiveProcess *process = NULL;

    ObjectFile *objFile = createObjectFile(executable);
    if (objFile == NULL) {
        fatal("Can't load object file %s", executable);
    }

#if THE_ISA == ALPHA_ISA
    if (objFile->getArch() != ObjectFile::Alpha)
        fatal("Object file architecture does not match compiled ISA (Alpha).");
    switch (objFile->getOpSys()) {
      case ObjectFile::Tru64:
        process = new AlphaTru64Process(nm, objFile, system,
                                        stdin_fd, stdout_fd, stderr_fd,
                                        argv, envp, cwd,
                                        _uid, _euid, _gid, _egid, _pid, _ppid);
        break;

      case ObjectFile::Linux:
        process = new AlphaLinuxProcess(nm, objFile, system,
                                        stdin_fd, stdout_fd, stderr_fd,
                                        argv, envp, cwd,
                                        _uid, _euid, _gid, _egid, _pid, _ppid);
        break;

      default:
        fatal("Unknown/unsupported operating system.");
    }
#elif THE_ISA == SPARC_ISA
    if (objFile->getArch() != ObjectFile::SPARC)
        fatal("Object file architecture does not match compiled ISA (SPARC).");
    switch (objFile->getOpSys()) {
      case ObjectFile::Linux:
        process = new SparcLinuxProcess(nm, objFile, system,
                                        stdin_fd, stdout_fd, stderr_fd,
                                        argv, envp, cwd,
                                        _uid, _euid, _gid, _egid, _pid, _ppid);
        break;


      case ObjectFile::Solaris:
        process = new SparcSolarisProcess(nm, objFile, system,
                                        stdin_fd, stdout_fd, stderr_fd,
                                        argv, envp, cwd,
                                        _uid, _euid, _gid, _egid, _pid, _ppid);
        break;
      default:
        fatal("Unknown/unsupported operating system.");
    }
#elif THE_ISA == MIPS_ISA
    if (objFile->getArch() != ObjectFile::Mips)
        fatal("Object file architecture does not match compiled ISA (MIPS).");
    switch (objFile->getOpSys()) {
      case ObjectFile::Linux:
        process = new MipsLinuxProcess(nm, objFile, system,
                                        stdin_fd, stdout_fd, stderr_fd,
                                        argv, envp, cwd,
                                        _uid, _euid, _gid, _egid, _pid, _ppid);
        break;

      default:
        fatal("Unknown/unsupported operating system.");
    }
#else
#error "THE_ISA not set"
#endif


    if (process == NULL)
        fatal("Unknown error creating process object.");
    return process;
}


BEGIN_DECLARE_SIM_OBJECT_PARAMS(LiveProcess)

    VectorParam<string> cmd;
    Param<string> executable;
    Param<string> input;
    Param<string> output;
    VectorParam<string> env;
    Param<string> cwd;
    SimObjectParam<System *> system;
    Param<uint64_t> uid;
    Param<uint64_t> euid;
    Param<uint64_t> gid;
    Param<uint64_t> egid;
    Param<uint64_t> pid;
    Param<uint64_t> ppid;

END_DECLARE_SIM_OBJECT_PARAMS(LiveProcess)


BEGIN_INIT_SIM_OBJECT_PARAMS(LiveProcess)

    INIT_PARAM(cmd, "command line (executable plus arguments)"),
    INIT_PARAM(executable, "executable (overrides cmd[0] if set)"),
    INIT_PARAM(input, "filename for stdin (dflt: use sim stdin)"),
    INIT_PARAM(output, "filename for stdout/stderr (dflt: use sim stdout)"),
    INIT_PARAM(env, "environment settings"),
    INIT_PARAM(cwd, "current working directory"),
    INIT_PARAM(system, "system"),
    INIT_PARAM(uid, "user id"),
    INIT_PARAM(euid, "effective user id"),
    INIT_PARAM(gid, "group id"),
    INIT_PARAM(egid, "effective group id"),
    INIT_PARAM(pid, "process id"),
    INIT_PARAM(ppid, "parent process id")

END_INIT_SIM_OBJECT_PARAMS(LiveProcess)


CREATE_SIM_OBJECT(LiveProcess)
{
    string in = input;
    string out = output;

    // initialize file descriptors to default: same as simulator
    int stdin_fd, stdout_fd, stderr_fd;

    if (in == "stdin" || in == "cin")
        stdin_fd = STDIN_FILENO;
    else
        stdin_fd = Process::openInputFile(input);

    if (out == "stdout" || out == "cout")
        stdout_fd = STDOUT_FILENO;
    else if (out == "stderr" || out == "cerr")
        stdout_fd = STDERR_FILENO;
    else
        stdout_fd = Process::openOutputFile(out);

    stderr_fd = (stdout_fd != STDOUT_FILENO) ? stdout_fd : STDERR_FILENO;

    return LiveProcess::create(getInstanceName(), system,
                               stdin_fd, stdout_fd, stderr_fd,
                               (string)executable == "" ? cmd[0] : executable,
                               cmd, env, cwd,
                               uid, euid, gid, egid, pid, ppid);
}


REGISTER_SIM_OBJECT("LiveProcess", LiveProcess)