/* * Copyright (c) 2014-2016 Advanced Micro Devices, Inc. * Copyright (c) 2012 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2001-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Nathan Binkert * Steve Reinhardt * Ali Saidi * Brandon Potter */ #include "sim/process.hh" #include #include #include #include #include #include #include #include #include "base/intmath.hh" #include "base/loader/object_file.hh" #include "base/loader/symtab.hh" #include "base/statistics.hh" #include "config/the_isa.hh" #include "cpu/thread_context.hh" #include "mem/page_table.hh" #include "mem/se_translating_port_proxy.hh" #include "params/Process.hh" #include "sim/emul_driver.hh" #include "sim/fd_array.hh" #include "sim/fd_entry.hh" #include "sim/redirect_path.hh" #include "sim/syscall_desc.hh" #include "sim/system.hh" using namespace std; using namespace TheISA; static std::string normalize(std::string& directory) { if (directory.back() != '/') directory += '/'; return directory; } Process::Process(ProcessParams *params, EmulationPageTable *pTable, ObjectFile *obj_file) : SimObject(params), system(params->system), useArchPT(params->useArchPT), kvmInSE(params->kvmInSE), useForClone(false), pTable(pTable), initVirtMem(system->getSystemPort(), this, SETranslatingPortProxy::Always), objFile(obj_file), argv(params->cmd), envp(params->env), executable(params->executable), tgtCwd(normalize(params->cwd)), hostCwd(checkPathRedirect(tgtCwd)), release(params->release), _uid(params->uid), _euid(params->euid), _gid(params->gid), _egid(params->egid), _pid(params->pid), _ppid(params->ppid), _pgid(params->pgid), drivers(params->drivers), fds(make_shared(params->input, params->output, params->errout)), childClearTID(0) { if (_pid >= System::maxPID) fatal("_pid is too large: %d", _pid); auto ret_pair = system->PIDs.emplace(_pid); if (!ret_pair.second) fatal("_pid %d is already used", _pid); /** * Linux bundles together processes into this concept called a thread * group. The thread group is responsible for recording which processes * behave as threads within a process context. The thread group leader * is the process who's tgid is equal to its pid. Other processes which * belong to the thread group, but do not lead the thread group, are * treated as child threads. These threads are created by the clone system * call with options specified to create threads (differing from the * options used to implement a fork). By default, set up the tgid/pid * with a new, equivalent value. If CLONE_THREAD is specified, patch * the tgid value with the old process' value. */ _tgid = params->pid; exitGroup = new bool(); sigchld = new bool(); if (!debugSymbolTable) { debugSymbolTable = new SymbolTable(); if (!objFile->loadGlobalSymbols(debugSymbolTable) || !objFile->loadLocalSymbols(debugSymbolTable) || !objFile->loadWeakSymbols(debugSymbolTable)) { delete debugSymbolTable; debugSymbolTable = nullptr; } } } void Process::clone(ThreadContext *otc, ThreadContext *ntc, Process *np, RegVal flags) { #ifndef CLONE_VM #define CLONE_VM 0 #endif #ifndef CLONE_FILES #define CLONE_FILES 0 #endif #ifndef CLONE_THREAD #define CLONE_THREAD 0 #endif if (CLONE_VM & flags) { /** * Share the process memory address space between the new process * and the old process. Changes in one will be visible in the other * due to the pointer use. */ delete np->pTable; np->pTable = pTable; auto &proxy = dynamic_cast( ntc->getVirtProxy()); proxy.setPageTable(np->pTable); np->memState = memState; } else { /** * Duplicate the process memory address space. The state needs to be * copied over (rather than using pointers to share everything). */ typedef std::vector> MapVec; MapVec mappings; pTable->getMappings(&mappings); for (auto map : mappings) { Addr paddr, vaddr = map.first; bool alloc_page = !(np->pTable->translate(vaddr, paddr)); np->replicatePage(vaddr, paddr, otc, ntc, alloc_page); } *np->memState = *memState; } if (CLONE_FILES & flags) { /** * The parent and child file descriptors are shared because the * two FDArray pointers are pointing to the same FDArray. Opening * and closing file descriptors will be visible to both processes. */ np->fds = fds; } else { /** * Copy the file descriptors from the old process into the new * child process. The file descriptors entry can be opened and * closed independently of the other process being considered. The * host file descriptors are also dup'd so that the flags for the * host file descriptor is independent of the other process. */ for (int tgt_fd = 0; tgt_fd < fds->getSize(); tgt_fd++) { std::shared_ptr nfds = np->fds; std::shared_ptr this_fde = (*fds)[tgt_fd]; if (!this_fde) { nfds->setFDEntry(tgt_fd, nullptr); continue; } nfds->setFDEntry(tgt_fd, this_fde->clone()); auto this_hbfd = std::dynamic_pointer_cast(this_fde); if (!this_hbfd) continue; int this_sim_fd = this_hbfd->getSimFD(); if (this_sim_fd <= 2) continue; int np_sim_fd = dup(this_sim_fd); assert(np_sim_fd != -1); auto nhbfd = std::dynamic_pointer_cast((*nfds)[tgt_fd]); nhbfd->setSimFD(np_sim_fd); } } if (CLONE_THREAD & flags) { np->_tgid = _tgid; delete np->exitGroup; np->exitGroup = exitGroup; } np->argv.insert(np->argv.end(), argv.begin(), argv.end()); np->envp.insert(np->envp.end(), envp.begin(), envp.end()); } void Process::regStats() { SimObject::regStats(); using namespace Stats; numSyscalls .name(name() + ".numSyscalls") .desc("Number of system calls") ; } ThreadContext * Process::findFreeContext() { for (auto &it : system->threadContexts) { if (ThreadContext::Halted == it->status()) return it; } return nullptr; } void Process::revokeThreadContext(int context_id) { std::vector::iterator it; for (it = contextIds.begin(); it != contextIds.end(); it++) { if (*it == context_id) { contextIds.erase(it); return; } } warn("Unable to find thread context to revoke"); } void Process::initState() { if (contextIds.empty()) fatal("Process %s is not associated with any HW contexts!\n", name()); // first thread context for this process... initialize & enable ThreadContext *tc = system->getThreadContext(contextIds[0]); // mark this context as active so it will start ticking. tc->activate(); pTable->initState(tc); } DrainState Process::drain() { fds->updateFileOffsets(); return DrainState::Drained; } void Process::allocateMem(Addr vaddr, int64_t size, bool clobber) { int npages = divCeil(size, (int64_t)PageBytes); Addr paddr = system->allocPhysPages(npages); pTable->map(vaddr, paddr, size, clobber ? EmulationPageTable::Clobber : EmulationPageTable::MappingFlags(0)); } void Process::replicatePage(Addr vaddr, Addr new_paddr, ThreadContext *old_tc, ThreadContext *new_tc, bool allocate_page) { if (allocate_page) new_paddr = system->allocPhysPages(1); // Read from old physical page. uint8_t *buf_p = new uint8_t[PageBytes]; old_tc->getVirtProxy().readBlob(vaddr, buf_p, PageBytes); // Create new mapping in process address space by clobbering existing // mapping (if any existed) and then write to the new physical page. bool clobber = true; pTable->map(vaddr, new_paddr, PageBytes, clobber); new_tc->getVirtProxy().writeBlob(vaddr, buf_p, PageBytes); delete[] buf_p; } bool Process::fixupStackFault(Addr vaddr) { Addr stack_min = memState->getStackMin(); Addr stack_base = memState->getStackBase(); Addr max_stack_size = memState->getMaxStackSize(); // Check if this is already on the stack and there's just no page there // yet. if (vaddr >= stack_min && vaddr < stack_base) { allocateMem(roundDown(vaddr, PageBytes), PageBytes); return true; } // We've accessed the next page of the stack, so extend it to include // this address. if (vaddr < stack_min && vaddr >= stack_base - max_stack_size) { while (vaddr < stack_min) { stack_min -= TheISA::PageBytes; if (stack_base - stack_min > max_stack_size) fatal("Maximum stack size exceeded\n"); allocateMem(stack_min, TheISA::PageBytes); inform("Increasing stack size by one page."); } memState->setStackMin(stack_min); return true; } return false; } void Process::serialize(CheckpointOut &cp) const { memState->serialize(cp); pTable->serialize(cp); /** * Checkpoints for file descriptors currently do not work. Need to * come back and fix them at a later date. */ warn("Checkpoints for file descriptors currently do not work."); } void Process::unserialize(CheckpointIn &cp) { memState->unserialize(cp); pTable->unserialize(cp); /** * Checkpoints for file descriptors currently do not work. Need to * come back and fix them at a later date. */ warn("Checkpoints for file descriptors currently do not work."); // The above returns a bool so that you could do something if you don't // find the param in the checkpoint if you wanted to, like set a default // but in this case we'll just stick with the instantiated value if not // found. } bool Process::map(Addr vaddr, Addr paddr, int size, bool cacheable) { pTable->map(vaddr, paddr, size, cacheable ? EmulationPageTable::MappingFlags(0) : EmulationPageTable::Uncacheable); return true; } void Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault) { numSyscalls++; SyscallDesc *desc = getDesc(callnum); if (desc == nullptr) fatal("Syscall %d out of range", callnum); desc->doSyscall(callnum, tc, fault); } RegVal Process::getSyscallArg(ThreadContext *tc, int &i, int width) { return getSyscallArg(tc, i); } EmulatedDriver * Process::findDriver(std::string filename) { for (EmulatedDriver *d : drivers) { if (d->match(filename)) return d; } return nullptr; } std::string Process::checkPathRedirect(const std::string &filename) { // If the input parameter contains a relative path, convert it. // The target version of the current working directory is fine since // we immediately convert it using redirect paths into a host version. auto abs_path = absolutePath(filename, false); for (auto path : system->redirectPaths) { // Search through the redirect paths to see if a starting substring of // our path falls into any buckets which need to redirected. if (startswith(abs_path, path->appPath())) { std::string tail = abs_path.substr(path->appPath().size()); // If this path needs to be redirected, search through a list // of targets to see if we can match a valid file (or directory). for (auto host_path : path->hostPaths()) { if (access((host_path + tail).c_str(), R_OK) == 0) { // Return the valid match. return host_path + tail; } } // The path needs to be redirected, but the file or directory // does not exist on the host filesystem. Return the first // host path as a default. return path->hostPaths()[0] + tail; } } // The path does not need to be redirected. return abs_path; } void Process::updateBias() { ObjectFile *interp = objFile->getInterpreter(); if (!interp || !interp->relocatable()) return; // Determine how large the interpreters footprint will be in the process // address space. Addr interp_mapsize = roundUp(interp->mapSize(), TheISA::PageBytes); // We are allocating the memory area; set the bias to the lowest address // in the allocated memory region. Addr mmap_end = memState->getMmapEnd(); Addr ld_bias = mmapGrowsDown() ? mmap_end - interp_mapsize : mmap_end; // Adjust the process mmap area to give the interpreter room; the real // execve system call would just invoke the kernel's internal mmap // functions to make these adjustments. mmap_end = mmapGrowsDown() ? ld_bias : mmap_end + interp_mapsize; memState->setMmapEnd(mmap_end); interp->updateBias(ld_bias); } ObjectFile * Process::getInterpreter() { return objFile->getInterpreter(); } Addr Process::getBias() { ObjectFile *interp = getInterpreter(); return interp ? interp->bias() : objFile->bias(); } Addr Process::getStartPC() { ObjectFile *interp = getInterpreter(); return interp ? interp->entryPoint() : objFile->entryPoint(); } std::string Process::absolutePath(const std::string &filename, bool host_filesystem) { if (filename.empty() || startswith(filename, "/")) return filename; // Construct the absolute path given the current working directory for // either the host filesystem or target filesystem. The distinction only // matters if filesystem redirection is utilized in the simulation. auto path_base = std::string(); if (host_filesystem) { path_base = hostCwd; assert(!hostCwd.empty()); } else { path_base = tgtCwd; assert(!tgtCwd.empty()); } // Add a trailing '/' if the current working directory did not have one. normalize(path_base); // Append the filename onto the current working path. auto absolute_path = path_base + filename; return absolute_path; } Process * ProcessParams::create() { Process *process = nullptr; // If not specified, set the executable parameter equal to the // simulated system's zeroth command line parameter if (executable == "") { executable = cmd[0]; } ObjectFile *obj_file = createObjectFile(executable); fatal_if(!obj_file, "Can't load object file %s", executable); process = ObjectFile::tryLoaders(this, obj_file); fatal_if(!process, "Unknown error creating process object."); return process; }