/* * Copyright (c) 2010-2012, 2015, 2017 ARM Limited * All rights reserved * * The license below extends only to copyright in the software and shall * not be construed as granting a license to any other intellectual * property including but not limited to intellectual property relating * to a hardware implementation of the functionality of the software * licensed hereunder. You may use the software subject to the license * terms below provided that you ensure that this notice is replicated * unmodified and in its entirety in all distributions of the software, * modified or unmodified, in source code or in binary form. * * Copyright (c) 2011 Advanced Micro Devices, Inc. * Copyright (c) 2003-2006 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Nathan Binkert */ #include "sim/pseudo_inst.hh" #include #include #include #include #include #include #include #include "arch/kernel_stats.hh" #include "arch/pseudo_inst.hh" #include "arch/utility.hh" #include "arch/vtophys.hh" #include "base/debug.hh" #include "base/output.hh" #include "config/the_isa.hh" #include "cpu/base.hh" #include "cpu/quiesce_event.hh" #include "cpu/thread_context.hh" #include "debug/Loader.hh" #include "debug/PseudoInst.hh" #include "debug/Quiesce.hh" #include "debug/WorkItems.hh" #include "dev/net/dist_iface.hh" #include "params/BaseCPU.hh" #include "sim/full_system.hh" #include "sim/initparam_keys.hh" #include "sim/process.hh" #include "sim/serialize.hh" #include "sim/sim_events.hh" #include "sim/sim_exit.hh" #include "sim/stat_control.hh" #include "sim/stats.hh" #include "sim/system.hh" #include "sim/vptr.hh" using namespace std; using namespace Stats; using namespace TheISA; namespace PseudoInst { static inline void panicFsOnlyPseudoInst(const char *name) { panic("Pseudo inst \"%s\" is only available in Full System mode."); } uint64_t pseudoInst(ThreadContext *tc, uint8_t func, uint8_t subfunc) { uint64_t args[4]; DPRINTF(PseudoInst, "PseudoInst::pseudoInst(%i, %i)\n", func, subfunc); // We need to do this in a slightly convoluted way since // getArgument() might have side-effects on arg_num. We could have // used the Argument class, but due to the possible side effects // from getArgument, it'd most likely break. int arg_num(0); for (int i = 0; i < sizeof(args) / sizeof(*args); ++i) { args[arg_num] = getArgument(tc, arg_num, sizeof(uint64_t), false); ++arg_num; } switch (func) { case M5OP_ARM: arm(tc); break; case M5OP_QUIESCE: quiesce(tc); break; case M5OP_QUIESCE_NS: quiesceNs(tc, args[0]); break; case M5OP_QUIESCE_CYCLE: quiesceCycles(tc, args[0]); break; case M5OP_QUIESCE_TIME: return quiesceTime(tc); case M5OP_RPNS: return rpns(tc); case M5OP_WAKE_CPU: wakeCPU(tc, args[0]); break; case M5OP_EXIT: m5exit(tc, args[0]); break; case M5OP_FAIL: m5fail(tc, args[0], args[1]); break; case M5OP_INIT_PARAM: return initParam(tc, args[0], args[1]); case M5OP_LOAD_SYMBOL: loadsymbol(tc); break; case M5OP_RESET_STATS: resetstats(tc, args[0], args[1]); break; case M5OP_DUMP_STATS: dumpstats(tc, args[0], args[1]); break; case M5OP_DUMP_RESET_STATS: dumpresetstats(tc, args[0], args[1]); break; case M5OP_CHECKPOINT: m5checkpoint(tc, args[0], args[1]); break; case M5OP_WRITE_FILE: return writefile(tc, args[0], args[1], args[2], args[3]); case M5OP_READ_FILE: return readfile(tc, args[0], args[1], args[2]); case M5OP_DEBUG_BREAK: debugbreak(tc); break; case M5OP_SWITCH_CPU: switchcpu(tc); break; case M5OP_ADD_SYMBOL: addsymbol(tc, args[0], args[1]); break; case M5OP_PANIC: panic("M5 panic instruction called at %s\n", tc->pcState()); case M5OP_WORK_BEGIN: workbegin(tc, args[0], args[1]); break; case M5OP_WORK_END: workend(tc, args[0], args[1]); break; case M5OP_ANNOTATE: case M5OP_RESERVED2: case M5OP_RESERVED3: case M5OP_RESERVED4: case M5OP_RESERVED5: warn("Unimplemented m5 op (0x%x)\n", func); break; /* SE mode functions */ case M5OP_SE_SYSCALL: m5Syscall(tc); break; case M5OP_SE_PAGE_FAULT: m5PageFault(tc); break; /* dist-gem5 functions */ case M5OP_DIST_TOGGLE_SYNC: togglesync(tc); break; default: warn("Unhandled m5 op: 0x%x\n", func); break; } return 0; } void arm(ThreadContext *tc) { DPRINTF(PseudoInst, "PseudoInst::arm()\n"); if (!FullSystem) panicFsOnlyPseudoInst("arm"); if (tc->getKernelStats()) tc->getKernelStats()->arm(); } void quiesce(ThreadContext *tc) { DPRINTF(PseudoInst, "PseudoInst::quiesce()\n"); tc->quiesce(); } void quiesceSkip(ThreadContext *tc) { DPRINTF(PseudoInst, "PseudoInst::quiesceSkip()\n"); tc->quiesceTick(tc->getCpuPtr()->nextCycle() + 1); } void quiesceNs(ThreadContext *tc, uint64_t ns) { DPRINTF(PseudoInst, "PseudoInst::quiesceNs(%i)\n", ns); tc->quiesceTick(curTick() + SimClock::Int::ns * ns); } void quiesceCycles(ThreadContext *tc, uint64_t cycles) { DPRINTF(PseudoInst, "PseudoInst::quiesceCycles(%i)\n", cycles); tc->quiesceTick(tc->getCpuPtr()->clockEdge(Cycles(cycles))); } uint64_t quiesceTime(ThreadContext *tc) { DPRINTF(PseudoInst, "PseudoInst::quiesceTime()\n"); return (tc->readLastActivate() - tc->readLastSuspend()) / SimClock::Int::ns; } uint64_t rpns(ThreadContext *tc) { DPRINTF(PseudoInst, "PseudoInst::rpns()\n"); return curTick() / SimClock::Int::ns; } void wakeCPU(ThreadContext *tc, uint64_t cpuid) { DPRINTF(PseudoInst, "PseudoInst::wakeCPU(%i)\n", cpuid); System *sys = tc->getSystemPtr(); if (sys->numContexts() <= cpuid) { warn("PseudoInst::wakeCPU(%i), cpuid greater than number of contexts" "(%i)\n",cpuid, sys->numContexts()); return; } ThreadContext *other_tc = sys->threadContexts[cpuid]; if (other_tc->status() == ThreadContext::Suspended) other_tc->activate(); } void m5exit(ThreadContext *tc, Tick delay) { DPRINTF(PseudoInst, "PseudoInst::m5exit(%i)\n", delay); if (DistIface::readyToExit(delay)) { Tick when = curTick() + delay * SimClock::Int::ns; exitSimLoop("m5_exit instruction encountered", 0, when, 0, true); } } void m5fail(ThreadContext *tc, Tick delay, uint64_t code) { DPRINTF(PseudoInst, "PseudoInst::m5fail(%i, %i)\n", delay, code); Tick when = curTick() + delay * SimClock::Int::ns; exitSimLoop("m5_fail instruction encountered", code, when, 0, true); } void loadsymbol(ThreadContext *tc) { DPRINTF(PseudoInst, "PseudoInst::loadsymbol()\n"); if (!FullSystem) panicFsOnlyPseudoInst("loadsymbol"); const string &filename = tc->getCpuPtr()->system->params()->symbolfile; if (filename.empty()) { return; } std::string buffer; ifstream file(filename.c_str()); if (!file) fatal("file error: Can't open symbol table file %s\n", filename); while (!file.eof()) { getline(file, buffer); if (buffer.empty()) continue; string::size_type idx = buffer.find(' '); if (idx == string::npos) continue; string address = "0x" + buffer.substr(0, idx); eat_white(address); if (address.empty()) continue; // Skip over letter and space string symbol = buffer.substr(idx + 3); eat_white(symbol); if (symbol.empty()) continue; Addr addr; if (!to_number(address, addr)) continue; if (!tc->getSystemPtr()->kernelSymtab->insert(addr, symbol)) continue; DPRINTF(Loader, "Loaded symbol: %s @ %#llx\n", symbol, addr); } file.close(); } void addsymbol(ThreadContext *tc, Addr addr, Addr symbolAddr) { DPRINTF(PseudoInst, "PseudoInst::addsymbol(0x%x, 0x%x)\n", addr, symbolAddr); if (!FullSystem) panicFsOnlyPseudoInst("addSymbol"); char symb[100]; CopyStringOut(tc, symb, symbolAddr, 100); std::string symbol(symb); DPRINTF(Loader, "Loaded symbol: %s @ %#llx\n", symbol, addr); tc->getSystemPtr()->kernelSymtab->insert(addr,symbol); debugSymbolTable->insert(addr,symbol); } uint64_t initParam(ThreadContext *tc, uint64_t key_str1, uint64_t key_str2) { DPRINTF(PseudoInst, "PseudoInst::initParam() key:%s%s\n", (char *)&key_str1, (char *)&key_str2); if (!FullSystem) { panicFsOnlyPseudoInst("initParam"); return 0; } // The key parameter string is passed in via two 64-bit registers. We copy // out the characters from the 64-bit integer variables here and concatenate // them in the key_str character buffer const int len = 2 * sizeof(uint64_t) + 1; char key_str[len]; memset(key_str, '\0', len); if (key_str1 == 0) { assert(key_str2 == 0); } else { strncpy(key_str, (char *)&key_str1, sizeof(uint64_t)); } if (strlen(key_str) == sizeof(uint64_t)) { strncpy(key_str + sizeof(uint64_t), (char *)&key_str2, sizeof(uint64_t)); } else { assert(key_str2 == 0); } // Compare the key parameter with the known values to select the return // value uint64_t val; if (strcmp(key_str, InitParamKey::DEFAULT) == 0) { val = tc->getCpuPtr()->system->init_param; } else if (strcmp(key_str, InitParamKey::DIST_RANK) == 0) { val = DistIface::rankParam(); } else if (strcmp(key_str, InitParamKey::DIST_SIZE) == 0) { val = DistIface::sizeParam(); } else { panic("Unknown key for initparam pseudo instruction:\"%s\"", key_str); } return val; } void resetstats(ThreadContext *tc, Tick delay, Tick period) { DPRINTF(PseudoInst, "PseudoInst::resetstats(%i, %i)\n", delay, period); if (!tc->getCpuPtr()->params()->do_statistics_insts) return; Tick when = curTick() + delay * SimClock::Int::ns; Tick repeat = period * SimClock::Int::ns; Stats::schedStatEvent(false, true, when, repeat); } void dumpstats(ThreadContext *tc, Tick delay, Tick period) { DPRINTF(PseudoInst, "PseudoInst::dumpstats(%i, %i)\n", delay, period); if (!tc->getCpuPtr()->params()->do_statistics_insts) return; Tick when = curTick() + delay * SimClock::Int::ns; Tick repeat = period * SimClock::Int::ns; Stats::schedStatEvent(true, false, when, repeat); } void dumpresetstats(ThreadContext *tc, Tick delay, Tick period) { DPRINTF(PseudoInst, "PseudoInst::dumpresetstats(%i, %i)\n", delay, period); if (!tc->getCpuPtr()->params()->do_statistics_insts) return; Tick when = curTick() + delay * SimClock::Int::ns; Tick repeat = period * SimClock::Int::ns; Stats::schedStatEvent(true, true, when, repeat); } void m5checkpoint(ThreadContext *tc, Tick delay, Tick period) { DPRINTF(PseudoInst, "PseudoInst::m5checkpoint(%i, %i)\n", delay, period); if (!tc->getCpuPtr()->params()->do_checkpoint_insts) return; if (DistIface::readyToCkpt(delay, period)) { Tick when = curTick() + delay * SimClock::Int::ns; Tick repeat = period * SimClock::Int::ns; exitSimLoop("checkpoint", 0, when, repeat); } } uint64_t readfile(ThreadContext *tc, Addr vaddr, uint64_t len, uint64_t offset) { DPRINTF(PseudoInst, "PseudoInst::readfile(0x%x, 0x%x, 0x%x)\n", vaddr, len, offset); if (!FullSystem) { panicFsOnlyPseudoInst("readfile"); return 0; } const string &file = tc->getSystemPtr()->params()->readfile; if (file.empty()) { return ULL(0); } uint64_t result = 0; int fd = ::open(file.c_str(), O_RDONLY, 0); if (fd < 0) panic("could not open file %s\n", file); if (::lseek(fd, offset, SEEK_SET) < 0) panic("could not seek: %s", strerror(errno)); char *buf = new char[len]; char *p = buf; while (len > 0) { int bytes = ::read(fd, p, len); if (bytes <= 0) break; p += bytes; result += bytes; len -= bytes; } close(fd); CopyIn(tc, vaddr, buf, result); delete [] buf; return result; } uint64_t writefile(ThreadContext *tc, Addr vaddr, uint64_t len, uint64_t offset, Addr filename_addr) { DPRINTF(PseudoInst, "PseudoInst::writefile(0x%x, 0x%x, 0x%x, 0x%x)\n", vaddr, len, offset, filename_addr); // copy out target filename char fn[100]; std::string filename; CopyStringOut(tc, fn, filename_addr, 100); filename = std::string(fn); OutputStream *out; if (offset == 0) { // create a new file (truncate) out = simout.create(filename, true, true); } else { // do not truncate file if offset is non-zero // (ios::in flag is required as well to keep the existing data // intact, otherwise existing data will be zeroed out.) out = simout.open(filename, ios::in | ios::out | ios::binary, true); } ostream *os(out->stream()); if (!os) panic("could not open file %s\n", filename); // seek to offset os->seekp(offset); // copy out data and write to file char *buf = new char[len]; CopyOut(tc, buf, vaddr, len); os->write(buf, len); if (os->fail() || os->bad()) panic("Error while doing writefile!\n"); simout.close(out); delete [] buf; return len; } void debugbreak(ThreadContext *tc) { DPRINTF(PseudoInst, "PseudoInst::debugbreak()\n"); Debug::breakpoint(); } void switchcpu(ThreadContext *tc) { DPRINTF(PseudoInst, "PseudoInst::switchcpu()\n"); exitSimLoop("switchcpu"); } void togglesync(ThreadContext *tc) { DPRINTF(PseudoInst, "PseudoInst::togglesync()\n"); DistIface::toggleSync(tc); } // // This function is executed when annotated work items begin. Depending on // what the user specified at the command line, the simulation may exit and/or // take a checkpoint when a certain work item begins. // void workbegin(ThreadContext *tc, uint64_t workid, uint64_t threadid) { DPRINTF(PseudoInst, "PseudoInst::workbegin(%i, %i)\n", workid, threadid); System *sys = tc->getSystemPtr(); const System::Params *params = sys->params(); if (params->exit_on_work_items) { exitSimLoop("workbegin", static_cast(workid)); return; } DPRINTF(WorkItems, "Work Begin workid: %d, threadid %d\n", workid, threadid); tc->getCpuPtr()->workItemBegin(); sys->workItemBegin(threadid, workid); // // If specified, determine if this is the specific work item the user // identified // if (params->work_item_id == -1 || params->work_item_id == workid) { uint64_t systemWorkBeginCount = sys->incWorkItemsBegin(); int cpuId = tc->getCpuPtr()->cpuId(); if (params->work_cpus_ckpt_count != 0 && sys->markWorkItem(cpuId) >= params->work_cpus_ckpt_count) { // // If active cpus equals checkpoint count, create checkpoint // exitSimLoop("checkpoint"); } if (systemWorkBeginCount == params->work_begin_ckpt_count) { // // Note: the string specified as the cause of the exit event must // exactly equal "checkpoint" inorder to create a checkpoint // exitSimLoop("checkpoint"); } if (systemWorkBeginCount == params->work_begin_exit_count) { // // If a certain number of work items started, exit simulation // exitSimLoop("work started count reach"); } if (cpuId == params->work_begin_cpu_id_exit) { // // If work started on the cpu id specified, exit simulation // exitSimLoop("work started on specific cpu"); } } } // // This function is executed when annotated work items end. Depending on // what the user specified at the command line, the simulation may exit and/or // take a checkpoint when a certain work item ends. // void workend(ThreadContext *tc, uint64_t workid, uint64_t threadid) { DPRINTF(PseudoInst, "PseudoInst::workend(%i, %i)\n", workid, threadid); System *sys = tc->getSystemPtr(); const System::Params *params = sys->params(); if (params->exit_on_work_items) { exitSimLoop("workend", static_cast(workid)); return; } DPRINTF(WorkItems, "Work End workid: %d, threadid %d\n", workid, threadid); tc->getCpuPtr()->workItemEnd(); sys->workItemEnd(threadid, workid); // // If specified, determine if this is the specific work item the user // identified // if (params->work_item_id == -1 || params->work_item_id == workid) { uint64_t systemWorkEndCount = sys->incWorkItemsEnd(); int cpuId = tc->getCpuPtr()->cpuId(); if (params->work_cpus_ckpt_count != 0 && sys->markWorkItem(cpuId) >= params->work_cpus_ckpt_count) { // // If active cpus equals checkpoint count, create checkpoint // exitSimLoop("checkpoint"); } if (params->work_end_ckpt_count != 0 && systemWorkEndCount == params->work_end_ckpt_count) { // // If total work items completed equals checkpoint count, create // checkpoint // exitSimLoop("checkpoint"); } if (params->work_end_exit_count != 0 && systemWorkEndCount == params->work_end_exit_count) { // // If total work items completed equals exit count, exit simulation // exitSimLoop("work items exit count reached"); } } } } // namespace PseudoInst